
Potential Field Navigation
ROB 102: Introduction to AI & Programming

Lab Session 5
2021/10/15



Administrative

The next lecture on creating potential fields will be released this 
weekend.

Field trip! We will be visiting Ford’s autonomous cars at MCity next 
Friday at 12PM.



Today… 

1. Updates to the template code
2. Crash course in Git branching
3. “BotLab” (mapping + localization) overview
4. Potential field navigation on the robot

TODO Today:
1. Pull instructor upgrades into autonomous navigation repository
2. (Encouraged) Finish this week’s in-class activities
3. Make an attraction potential & use it to navigate the robot



Code Updates

You should see a couple new commits in your autonomous navigation 
repositories. Make sure you update your code:

git pull

We changed:
1. The Dockerfile: ./docker_build.sh will now update the nav app if new 

changes have been pushed to it (rebuild the container to see the updates!)
2. New maps: A couple new maps have been added which are better 

environments to test potential field navigation.
3. Fixes to local search (which we’ll use to drive the robot today).



Git Branching

Branches in Git are a useful tool for developing new features in your 
code, especially if you are collaborating on the code (like we are!).

We already have one branch in our repositories: the main branch.

main

Commits



Git Branching

We can create a new branch off the main branch. Then, we can modify 
the code and add commits to that branch.

main

my-new-feature

Creating a new branch (from the branch you are on):

git branch my-new-feature

Changing branches:

git checkout some-branch



Git Branching

We can create a new branch off the main branch. Then, we can modify 
the code and add commits to that branch.

main

my-new-feature

The benefit of making a new branch for a new feature is that the main 
branch still works while you’re developing and testing new code.



Git Branching

When you finish developing your new feature, you can merge your 
changes back into the main branch.

Now all the changes from my-new-feature will be in main.

main

my-new-feature
Merging a branch into the current branch:

git merge some-branch



Git Branching: Collaborative Development

Branches are a very useful tool when multiple people are working on 
the same code. 

main

my-new-feature

your-new-feature



Git Branching: Collaborative Development

Branches are a very useful tool when multiple people are working on 
the same code. 

my-new-feature

your-new-feature

main

Merge new changes from main into 
your-new-feature:

git merge main



Git Branching: Collaborative Development

Branches are a very useful tool when multiple people are working on 
the same code. 

main

my-new-feature

your-new-feature
Always know which branch you’re on! 
List all the branches:

git branch

Or check with git status.



Git Branching: Guidelines

1. Each person should be working on their own branch
2. Create one branch per feature 

• Giant branches with many changes (like branch “janas-code” where I write all 
my code) are a bad idea because they get out of sync with other branches.

3. Merge changes from main often so your branch doesn’t deviate too 
much 

4. The main branch should always work
• Only merge changes into main when you’ve thoroughly tested your code.



BotLab: Localization & Mapping Code

The code we call “BotLab” performs Simultaneous Localization and 
Mapping (SLAM) on the robot. It has the following executables:
1. timesync: Synchronizes time between sensors.
2. rplidar_driver: Reads from the LiDAR and shares the data with 

the other processes
3. motion_controller: Listens for goals (like a path or a clicked point 

in the GUI) and sends control commands
4. slam: Maps and localizes.
5. botgui: Visualizes robot data like map, pose and LiDAR scan.



BotLab: Motion Controller

Motion controller must be running to control the robot by clicking the 
BotGUI, or with the in-class potential field control activity.

Motion controller must not be running if you are running your own 
code that calls the drive() function. They will interfere with each other. 
To launch without starting motion controller:

./launch_botlab.sh -l 



BotLab: SLAM

SLAM can be run in mapping + localization mode or localization only 
mode (with a given map). 

SLAM must be running in mapping + localization mode to make a map. 
The map is saved in ~/botlab-bin/maps/current.map. 

SLAM must be running in localization only mode when you run code for 
Project 2 and 3 (since you will define the field over a fixed map). To run 
SLAM in localization only mode:

./launch_botlab.sh -m [PATH/TO/MAP]



BotLab: Common Issues

Always stop the code with ./cleanup_botlab.sh before launching 
again to avoid having many versions of the executables running 
together.

Use BotGUI to make sure your robot is localized correctly.

Make sure your battery is charged.



BotLab: Common Issues

My robot is lost!
• Sometimes this happens! Restart by calling the cleanup and launch scripts 

again. (A hack: pick up your robot and move it to where it thinks it is!)
• Did your map change? Small changes to the map can have a big effect on 

localization.
• Did you make a good map? If your map doesn’t have enough interesting

features for the robot to recognize (it’s in a huge open area, or many parts of
the map look exactly the same), localization will be difficult.

• Are you in the map? Our SLAM code does not have the ability to deal with 
moving obstacles (yet!).

• Did your robot bump into an obstacle or slip? Did you move the robot? 
Localization can be sensitive to big differences in where the robot thinks it 
should be moving and where it actually moved.



Robot Nav Code

src/robot_potential_field.cpp

Calculate the field given the goal 
cell and the graph (your code)

Listens for poses from the 
localization system.

Waits for a new pose

Gets the direction and magnitude 
of the largest decrease in potential

Your code: Navigate using the 
direction of largest decrease.



Potential Field Navigation on the Robot

Start by getting the robot to drive using 
an attraction potential only.

Build the field using function:

createAttractivePotential()

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10



Local Search

Local search returns vector:

{vx, vy, grad}

The robot should drive in the direction of this 
vector. 

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10



Local Search

Local search returns vector:

{vx, vy, grad}

The robot should drive in the direction of this 
vector. 

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10

vx

vy

grad = sqrt(8)-sqrt(2)

The magnitude of potential decrease. 
Can be used to control the velocity of 
the robot.



Local Search

To make control smoother, local search 
performs a lookahead. 

It will search for the lowest potential depth
neighbors away. 

You can tune the size of the lookahead if you 
are trying to get better performance:

local_search(x, y, theta, graph, field, depth)

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10
Optional! If not provided, 
default is 5.

This example: depth = 3



Potential Field Navigation on the Robot

To compile the code on the robot, do:

cd build/

cmake -DOMNIBOT=On ..
make

Start the localization (you might want to use NoMachine and the BotGUI):

~/botlab-bin/launch_botlab.sh -l -m [PATH/TO/MAP]

Run your code on the robot:

./robot_potential_field [PATH/TO/MAP] [goal_x goal_y]

Important! Robot code is only compiled 
on the robot (not in Docker)

No motion control since our code will 
drive the robot.

Use a fixed map.

Use the same map to 
compute the field

Can provide goal x and 
y position in meters



Attraction Field on the Webapp

Modify createPotentialField() to 
simply call createAttractionField()
and set potential_field equal to the 
result.

Compile and run the web app server 
(nav_app_server). 

In the webapp, pick a map and a goal, and 
planning algorithm “Potential Field.” Click 
“Plan!” to see the resulting path. You can 
visualize the field.



TODO Today

1. Update your code with instructor changes (git pull).
2. (Encouraged) Finish Monday’s in-class activity (draw a field).
3. Work on P2.1: Attractive potential navigation on the robot.

Focus on the robot code today! If you have extra time, or for 
homework:
• (Encouraged) Finish Wednesday’s in-class activity (distance 

transform).


	Potential Field Navigation
	Administrative
	Today… 
	Code Updates
	Git Branching
	Git Branching
	Git Branching
	Git Branching
	Git Branching: Collaborative Development
	Git Branching: Collaborative Development
	Git Branching: Collaborative Development
	Git Branching: Guidelines
	BotLab: Localization & Mapping Code
	BotLab: Motion Controller
	BotLab: SLAM
	BotLab: Common Issues
	BotLab: Common Issues
	Robot Nav Code
	Potential Field Navigation on the Robot
	Local Search
	Local Search
	Local Search
	Potential Field Navigation on the Robot
	Attraction Field on the Webapp
	TODO Today

