2D Bang-Bang Control
(Finding Minimum Ray)

ROB 102: Introduction to Al & Programming
2021/09/22

Administrative

Project O & Project 1 due October 4th, at 11:59 PM.

Deliverables: Project O

Code on GitHub (tag the final version)
In-class Demo (Oct 6t)

Deliverables: Project 1
Code on GitHub (tag the final version)
In-class Demo (Oct 6t")
Demo video of all parts (linked in README)

Administrative

Project O & Project 1 due October 4th, at 11:59 PM.

Demo Day for Project 0 & Project 1: October 6", in class (FRB 2000)
All team members should be present
Send instructors a message if you can’t attend

Your robot should complete a full lap around the demo course
PO will be demo-ed individually on student laptop

Friday’s lab: Driving parallel to the wall (for Project 1)

Last Week: 1D Control Problem

Goal: Write a controller so that the robot
drives towards the wall and stops a
/ certain distance from the wall.

/ Setpoint -
4 The desired distance from the wall is

called the setpoint.

Maintains distance to the wall directly in
front of the robot.

Today: Bang-Bang Control to Nearest Wall

Goal: Write a controller so that the robot
maintains a distance to the nearest wall.

Setpoint /
Shortest How? We can follow the shortest ray.

ray

In Project 1, we will follow the wall by driving
perpendicular to the shortest ray.

Today: Bang-Bang Control to Nearest Wall

/ / We can use the same controller (bang-
bang or P-control) as last week. But this

‘ Setpoint time, we’ll drive in the direction of the
‘ shortest ray.
Q\}.
O

/V‘gé) - We need to:
e 1. Find the direction and length of
e the shortest ray,

2. Drive the robot in any direction.

Recall: Laser scan data

The Lidar sends out a series of rays. The
LidarScan data type is a struct of vectors.

struct LidarsScan

{

}s

bool good; <+—— Whether scan is valid

int utime;

int num_ranges; <—— Number of rays in the scan

std:
std::
std:
std:

:vector<float> ranges;

+— Ray ranges (lengths, in meters)

vector<float> thetas; < Ray angles (in radians)

:vector<float> intensities; e Ray intensities

:vector<float> times;ﬂv\\-
Ray times

\

These vectors have length num_ranges

Finding the minimum length ray

main.cpp *

1
2
3
4
L
6
7
a8
=]

18
11
12
13
14
15
16
17
18
19

#include <iostream>

Minimum value

#include <wvector:

int main() { 1
std: :vector<int» v = {71, 9, 88, 15,| 6,|52};

int min_idx = @;
for (int 1 = @; 1 < v.size(); i++)

{

Your code here

}

std::cout << "Min index: " << min_idx << "\n";
std::cout << "Min value: " << v[min_idx] << "

| I

Goal: Find the index of the
minimum length ray.

Console Shell

~fTest$ g++ main.cpp -std=c++11 -o main
[Test$. /main
Min index: 4

Minimum value is
atindex 4

Min value: 6

~[Test$ D

Retrieving the value at the index
gives the minimum value

Finding the minimum length ray

struct Lidarscan

{
bool good;

int utime;

int num_ranges;

The minimum length ray is
=~ the one with the smallest
range value

std:
std:
std:
std:

:vector<float> ranges;
svector<ftloat> thetas;
svector<float> intensities;

svector<ftloat> times;

}s

Goal: Find the index of the minimum

length ray.
2z

angle to wall _~

\4,

// Get the distance to the wall.
float min_idx = findMinDist(scan);
float dist to wall = scan.ranges[min_idx];

float angle to wall = scan.thetas[min idx];

NG

Get the distance and

T~ angle using the index to

the minimum range ray

73
74
75
76
77
78

8a
81
82
83
84
85
86
87
88

9@
91
92
93
94
a5
96
97
98

108
181
182
183
104
185
106
187
188
189
118
111

float dt = @.01; // seconds

float setpoint = 8.35; // meters —— Setp0|nt |n meters

while (trus) { € Loop forever

tidarscan scen = readiidarscan(dn)i 4= Read a scan TO d ay : I\/I I n | e n gt h ray

if (scan.good)

i
| o Find index of minimum distance
// Get the distance to the wall.
Float min idx = findMinDist(scan); — (Your code!)
float dist_te wall = scan.ranges[min_idx];
float angle _to wall = scan.thetas[min_idx]; .
— Grab distance and angle to wall
std::cout << "Min distance: " << dist_te wall << " Angle: " << angle_to wall;
std::cout << " Intensity: " << scan.intensities[min_idx] << " | ";
// Calculate the appropriate control signal. (3 .
et control signal
float wel = feedbackControl(dist_to wall, setpoint); E;
(Your code! From last week)
std::cout << "Setpoint: " << setpoint << " Welocity: " << vel;
!/ Apply the control signal.
float vk = @;
float vy = @;
ll.;':-c:-c
* TODO: Use the angle to the wall (angle to _wall) to decompose the Decompose Ve|OC|ty |nt0 X and y
* yvelocity command (vel) into its x and y components. Store these
, . components
* in wx and vy respectively.
(Your code!)
std:icout << " (wx, vy): (" €< vx €< ", " €< vy << "Yn";
. Send the velocity signal to the
drive(wx, vy, @);
} robot
sleepFor(dt);

if (ctrl_c_pressed) break;

73
74
75
76
77
78
79
30
81
82
83
84
85
86
87
88
89
9@
91
92
93
94
a5
96
97
98
99

168

161

162

163

164

165

166

167

168

169

118

111

float dt = @.01; // seconds
float setpoint = ©8.35; // meters

while (true) {

Lidarscan scan = readlLidarScan(drv);

if (scan.good)

{
// Get the distance to the wall.
float min_idx = findMinDist(scan);
float dist_te wall = scan.ranges[min_idx];
float angle _to wall = scan.thetas[min_idx];
std::cout << "Min distance: " << dist_te wall << " Angle: " << angle_to wall;
std::cout << " Intensity: " << scan.intensities[min_idx] << " | ";
// Calculate the appropriate control signal.
float wel = feedbackControl(dist_to wall, setpoint);
std::cout << "Setpoint: " << setpoint << " Welocity: " << vel;
/7 Apply the control signal.
float vk = @;
float vy = @;
/**
* TODO: Use the angle to the wall (angle to _wall) to decompose the
* yvelocity command (vel) into its x and y components. Store these
* in wx and vy respectively.
:-c:i.’f
std:icout << " (wx, vy): (" €< vx €< ", " €< vy << "Yn";
drive(wx, vy, @);
¥
sleepFor(dt);

if (ctrl_c_pressed) break;

Today: Min length ray

35 int findMinDist({const LidarScan& scan)

36 {

37 int min_idx = @;

38 f*=

39 * TODO: Return the index of the shortest ray in the Lidar scan. For

48 * example, if the shortest ray is the third one, at index 2, return 2.

41 *

42 * HINT: The length of each ray is stored in the wvector scan.ranges.

43 *

- * HINT: Do not take into account any rays which have @ intensity. Those rays
45 * will hawve default range @, which will always be the minimum if you forget
45 * to check the intensity. The intensities are stored in scan.intensities.
a7 =g

48 return min_idx;

495 1

5@

TODO (1): Write a function to find the index of the
minimum length ray in a given Lidar scan.

Make sure to ignore any rays with zero intensity
(those default to zero range)

Today: Bang-Bang Control to Nearest Wall

/ / We can use the same controller (bang-
bang or P-control) as last week. But this

‘ Setpoint time, we’ll drive in the direction of the
‘ shortest ray.
Q\}.
O

/V‘gé) - We need to:
e 1. Find the direction and length of
e the shortest ray,

2. Drive the robot in any direction.

2D Velocity Control

Moving the robot forward:
drive(vx, 0, 0);
Moving the robot backward:

drive(-vx, 0, 0);

4.

> &

2D Velocity Control

Moving the robot left:
drive(0O, vy, 0);
Rotating counterclockwise:

drive(0O, 0, wz);

Wz

> &

vy

2D Velocity Control: Trigonometry Review

VX

To move in any direction (no rotation):

vX = v * cos(theta)
vy = v * sin(theta)

drive(vx, vy, 0)

This will work for any velocity and angle (try
it yourself!)

The <cmath> library

«—— Remember to Contains common math
include the library! OperationS.

The <cmath> library

fx Functions

Trigonometric functions

For a list of all the functions: oS

sin Compute sine (function)

tan Compute tangent (function)
acos Compute arc cosine (function)
asin Compute arc sine (function)

atan Compute arc tangent (function)

https://www.cplusplus.com/reference/cmath/ — Compute

arc tangent with two parameters (function)

Hyperbolic functions

cosh Compute hyperbolic cosine (function)
sinh Compute hyperbolic sine (function)
. . . tanh Compute hyperbolic tangent (function)
This website is a great reference for all acosh Compute area hyperbolic cosine (uncion)
asinh & Compute area hyperbolic sine (function)

th I n gs C++ ! atanh & Compute area hyperbolic tangent (function)

Exponential and logarithmic functions

exp Compute exponential function (function)

frexp Get significand and exponent (function)

Idexp Generate value from significand and exponent (function)
log Compute natural logarithm (function)

log10 Compute common logarithm (function)

modf Break into fractional and integral parts (function)

exp2 Compute binary exponential function (function)

expml &t Compute exponential minus one (function)

ilogb ! Integer binary logarithm (function)

loglp Compute logarithm plus one (function)

log2 <=t Compute binary logarithm (function)

logb Compute floating-point base logarithm (function)
scalbn Scale significand using floating-point base exponent (function)

crallhlsy e+l Crala cinrmifirand 1icimma flaztimAa-rnmint bacae avreanarnt (lamay (Frimerimm

https://www.cplusplus.com/reference/cmath/

73 float dt = @.01; // seconds

74 flost setpoint = ©.35; // meters —— Setp0|nt |n meters

75

76 while (trus) { € Loop forever

77 Lidarscan scan = readlLidarScan(drv); TO d a e 2 D CO nt rO | CO d e
78 - .
79 if (scan.good) Read a scan

- { J Find index of minimum distance

82 Float min idx = findMinDist(scan); — (Your code!)

83 float dist_te wall = scan.ranges[min_idx];

24 float angle _to wall = scan.thetas[min_idx]; \ .

. Grab distance and angle to wall

86 std::cout << "Min distance: " << dist_te wall << " Angle: " << angle_to wall;

87 std::cout << " Intensity: " << scan.intensities[min_idx] << " | ";

88

89 // Calculate the appropriate control signal. .

9@ float wel = feedbackControl(dist_to wall, setpoint); Get ContrOI SIgnal

o1 (Your code! From last week)
92 std::cout << "Setpoint: " << setpoint << " Welocity: " << vel;

93

94 !/ Apply the control signal.

95 float vk = @;

96 float vy = @;

97 [**

98 * TODO: Use the angle to the wall (angle to wall) to decompose the Decompose Ve|OC|ty |nt0 X and y
99 * yvelocity command (vel) into its x and y components. Store these D —

188 * in wx and vy respectively. Components

101 (Your code!)

182 std:icout << " (wx, vy): (" €< vx €< ", " €< vy << "Yn";

183 . .

o brivelos, vy,) Send the velocity signal to the

105 } robot

106

187 slespFor(dt);

188

189 if (ctrl_c_pressed) break;

118 3

111

73 float dt = @.01; // seconds

74 float setpoint = ©8.35; // meters

75

76 while (true) {

77 Lidarscan scan = readlLidarScan(drv); TO d a e F e e d b a C k C O nt ro |
78 .

79 if (scan.good)

80 {

81 // Get the distance to the wall.

82 float min_idx = findMinDist(scan);

83 float dist_to_wall = scan.ranges[min_idx]; 21 float feedbackControl(fleoat dist_to_wall, float setpoint)

24 float angle _to wall = scan.thetas[min_idx]; 23 {

= 23 float vel = @;

86 std::cout << "Min distance: " << dist_te wall << " Angle: " << angle_to wall; s Jes

87 std::cout << " Intensity: " << scan.intensities[min_idx] << " | ";

25 25 * TODO: Calculate the control command to send to the robot given the
89 // Calculate the appropriate control signal. 26 * current distance to the wall and the desired setpoint.

9@ float wel = feedbackControl(dist_to wall, setpoint); P 27 *

a1 28 * You can use either Bang-Bang control or P-control. Reuse your code from
92 std::cout << "Setpoint: " << setpoint << " Welocity: " << vel; 29 * the 1D control activity.

93

94 /7 Apply the control signal. 8 =/

a5 Float vx = @; 31 return wvel;

96 float vy = @; 32 }

97 /=¥ 33

98 * TODO: Use the angle to the wall (angle to _wall) to decompose the

99 * yvelocity command (vel) into its x and y components. Store these

o0 " in vx and vy respectively. TODO (2): Write a function that returns a control

1le1 =2

s icout << " (o)i (7 <6 v €T T <y <6 s command given the current distance and the

183

104 drive(vx, vy, 0); setpoint (use bang-bang or P-control).
1@5 1

188

sleepFor(dt); Reuse your code from last time!

188

189 if (ctrl_c_pressed) break;

11a 1

111

73
74
75
76
77
78

8a
81
82
83
84
85
86
87
88

9@
91
92
93
94
a5
96
97
98

108
181
182
183
104
185
106
187
188
189
118
111

float dt = @.01; // seconds
float setpoint = ©8.35; // meters

while (true) {

Lidarscan scan = readlLidarScan(drv);

if (scan.good)

Today

2D Velocity Commands

{
// Get the distance to the wall.
float min_idx = findMinDist(scan);
float dist_te wall = scan.ranges[min_idx];
float angle _to wall = scan.thetas[min_idx]; O O (3) C h I . . d d h
std::cout << "Min distance: " << dist_te wall << " Angle: " << angle_to wall; .
std::cout << " Intensity: " << scan.intensities[min_idx] << " | "; angle Into (VX, Vy) Commands-
// Calculate the appropriate control signal.
float wel = feedbackControl(dist_to wall, setpoint); -
/4 Apply the control signal.
std::cout << "Setpoint: " << setpoint << " Welocity: = B float wx = E.;
i’ = .
!/ Apply the control signal. float vy 23
float wx = @; Pl
float vy = @; =
. TODO: Use the angle to the wall {angle to wall) to decompose the
e -
* T0DO: Use the angle to the wall (angle_to_wall) to decompose the * velocity command (vel) into its x and y components. Store these
* yvelocity command (vel) into its x and y components. Store these * ip wx and vy PEEFIECti'—;'E].:,-'.
* in wx and vy respectively.
=%
.
std:icout << " (vx, vy): (" << vx <7, T << vy <<)" std::icout << " (wx, wy): (" << vx << ", " << vy << ")\
drive(vx, vy, @);
1 drive{wx, vy, @);
slespFor(dt);

if (ctrl_c_pressed) break;

Today:

1. Accept the assignment for this activity:
https://classroom.github.com/g/RkYnescx

2. Clone the repository on your robot

3. Write a function that finds the index of

the minimum ray in the Lidar scan in
findMinDiIst()

4. Rewrite your control function from last
time in feedbackControl ()

5. Decompose the velocity command into
a 2D command

6. Test your code on the robot!

int findMinDist{const LidarScan& scan)

Your code here!

float feedbackControl(float dist to wall, float setpoint)
{

Your code here!

control signal.

Your code here!

drive{vx, vy, @);

https://classroom.github.com/g/RkYnescx

	2D Bang-Bang Control �(Finding Minimum Ray)
	Administrative
	Administrative
	Last Week: 1D Control Problem
	Today: Bang-Bang Control to Nearest Wall
	Today: Bang-Bang Control to Nearest Wall
	Recall: Laser scan data
	Finding the minimum length ray
	Finding the minimum length ray
	Today: Min length ray
	Today: Min length ray
	Today: Bang-Bang Control to Nearest Wall
	2D Velocity Control
	2D Velocity Control
	2D Velocity Control: Trigonometry Review
	The <cmath> library
	The <cmath> library
	Today: 2D Control Code
	Today: Feedback Control
	Today: 2D Velocity Commands
	Today:

