
Potential Field Navigation:
The Distance Transform

ROB 102: Introduction to AI & Programming
Lecture 07

2021/10/11



Project 2: Potential Field Navigation

 Build a map of environment
 Form attraction potential to goal
 Form repulsion potentials away from obstacles
 Add potentials together into potential field
 Local search over potential field to navigate

Last lecture

2



Last time…

A potential field has high value 
in areas the robot should avoid 
and low value where the robot 
should go.

The robot navigates by moving 
to the area in its local region 
with the lowest potential.

(Link to GIF)

3

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Project 2: Potential Field Navigation

 Build a map of environment
 Form attraction potential to goal
 Form repulsion potentials away from obstacles
 Add potentials together into potential field
 Local search over potential field to navigate

4



Project 2: Potential Field Navigation

 Build a map of environment
 Form attraction potential to goal
 Form repulsion potentials away from obstacles
 Add potentials together into potential field
 Local search over potential field to navigate

Last lab

This 
lecture

5



Attraction Potential

How can we make a potential that pulls 
the robot towards the goal?

The distance from each cell to the goal 
makes a reasonable potential field.

6



Attraction Potential

How do we define the distance 
between cells?

Recall: Pythagorean Rule

𝑎𝑎

𝑏𝑏

7



Recall: Storing a Map in C++

We represent the cell in terms of a 
coordinate in the grid.

The coordinate is written (i, j), 
where i is the index of the row and j is 
the index of the column.

8



Attraction Potential

How do we define the distance 
between cells?

Recall: Pythagorean Rule

This is called the Euclidean Distance.

𝑎𝑎

𝑏𝑏

(i, j)

(goal_i, goal_j)

goal_i - i

goal_j - j

Recall: We can express a cell coordinate in 
terms of its row and column index: 
(row, col)

9



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal. 0

12 + 32
3

1
10

10



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal.

10

0

12 + 22
2

1
5

11

10



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal.

10 5

0

12 + 12 1

1
2

12

5



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal.

This makes a reasonable potential field 
which will pull the robot towards the 
goal.

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10

13



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal.

This makes a reasonable potential field 
which will pull the robot towards the 
goal.

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10

14



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal.

This makes a reasonable potential field 
which will pull the robot towards the 
goal.

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10

15



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal.

This makes a reasonable potential field 
which will pull the robot towards the 
goal.

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10

16



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal.

This makes a reasonable potential field 
which will pull the robot towards the 
goal.

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10

17



Attraction Potential

We can use the Pythagorean Rule to 
calculate the Euclidean distance from 
each cell to the goal.

This makes a reasonable potential field 
which will pull the robot towards the 
goal.

10 5 2 1 2

3 2 1 0 1

10 5 2 1 2

13 8 5 2 5

18 13 10 3 10

18



Example: Attraction Potential

That works!

You will do this in P2.1.

src/potential_field/potential_field.cpp 19



Dealing with Obstacles

What happens if there is an obstacle 
in the way?

20



Dealing with Obstacles

With just an attraction potential, the 
robot will try to go right through 
obstacles!

We need a way to repel the robot 
away from obstacles.

21



The Repulsion Potential

We can add another potential that 
pushes the robot away from 
obstacles.

Our final potential field will be a 
combination of the attraction and 
repulsion potentials.

Next lecture: How to combine potentials.

22



The Distance Transform

The distance transform is an 
algorithm that calculates the distance 
from each cell to the nearest 
occupied cell.

We will see two algorithms to 
compute the distance transform.

Next lecture: How to turn a distance 
transform into a repulsive field.

23



The Distance Transform

How do we calculate a distance 
transform?

Idea: For each cell, we could check 
the distance to every occupied cell in 
the graph.

Recall: We need to decide what “distance” 
means. We’ll use the Euclidean distance.

24



Computing the Distance Transform

Given a graph with width W and height H, 
with N = W*H cells:

dist_tf ← Vector of length N
for i=0 to N-1 do:
min_dist = HIGH
for j=0 to N-1 do:

if graph[j] is occupied:
dist ← Euclidean distance from cell i to j
if dist < min_dist:
min_dist = dist

dist_tf[i] = min_dist

Initialize the distance 
transform vector

25



Computing the Distance Transform

Given a graph with width W and height H, 
with N = W*H cells:

dist_tf ← Vector of length N
for i=0 to N-1 do:
min_dist = HIGH
for j=0 to N-1 do:

if graph[j] is occupied:
dist ← Euclidean distance from cell i to j
if dist < min_dist:
min_dist = dist

dist_tf[i] = min_dist

Initialize

Loop through every cell

26



Computing the Distance Transform

Given a graph with width W and height H, 
with N = W*H cells:

dist_tf ← Vector of length N
for i=0 to N-1 do:
min_dist = HIGH
for j=0 to N-1 do:

if graph[j] is occupied:
dist ← Euclidean distance from cell i to j
if dist < min_dist:
min_dist = dist

dist_tf[i] = min_dist

Initialize
Loop through every cell

Initialize the minimum distance

27



Computing the Distance Transform

Given a graph with width W and height H, 
with N = W*H cells:

dist_tf ← Vector of length N
for i=0 to N-1 do:
min_dist = HIGH
for j=0 to N-1 do:

if graph[j] is occupied:
dist ← Euclidean distance from cell i to j
if dist < min_dist:
min_dist = dist

dist_tf[i] = min_dist

Initialize
Loop through every cell

Initialize the minimum distance

Loop through every cell

28



Computing the Distance Transform

Given a graph with width W and height H, 
with N = W*H cells:

dist_tf ← Vector of length N
for i=0 to N-1 do:
min_dist = HIGH
for j=0 to N-1 do:

if graph[j] is occupied:
dist ← Euclidean distance from cell i to j
if dist < min_dist:
min_dist = dist

dist_tf[i] = min_dist

Initialize
Loop through every cell

Initialize the minimum distance

Loop through every cell

Keep track of the closest 
occupied cell to i

29



Computing the Distance Transform

Given a graph with width W and height H, 
with N = W*H cells:

dist_tf ← Vector of length N
for i=0 to N-1 do:
min_dist = HIGH
for j=0 to N-1 do:

if graph[j] is occupied:
dist ← Euclidean distance from cell i to j
if dist < min_dist:
min_dist = dist

dist_tf[i] = min_dist

Initialize
Loop through every cell

Initialize the minimum distance

Loop through every cell

Keep track of the closest 
occupied cell to i

Update the distance transform

30



Computing the Distance Transform

Given a graph with width W and height H, 
with N = W*H cells:

dist_tf ← Vector of length N
for i=0 to N-1 do:
min_dist = HIGH
for j=0 to N-1 do:

if graph[j] is occupied:
dist ← Euclidean distance from cell i to j
if dist < min_dist:
min_dist = dist

dist_tf[i] = min_dist

Initialize
Loop through every cell

Initialize the minimum distance

Loop through every cell

Keep track of the closest 
occupied cell to i

Update the distance transform

How many operations 
does this take?

31



Computing the Distance Transform

Given a graph with width W and height H, 
with N = W*H cells:

dist_tf ← Vector of length N
for i=0 to N-1 do:
min_dist = HIGH
for j=0 to N-1 do:

if graph[j] is occupied:
dist ← Euclidean distance from cell i to j
if dist < min_dist:
min_dist = dist

dist_tf[i] = min_dist

Loop through every cell

Loop through every cell

How many operations 
does this take?

Loop through N cells

Loop through N cells

32



Computing the Distance Transform

How many operations does this take?

We did N loops N times, or N2 loops
total.

Remember, N is the number of cells in 
the graph. As the graph gets bigger, 
this gets very slow!

33



Computing the Distance Transform

You will implement this “slow” 
distance transform using the 
Euclidean distance in P2.2.

src/potential_field/distance_transform.cpp

34



The Manhattan Distance

Another way to compute the distance 
between cells is the Manhattan distance.

We can get a faster distance transform 
algorithm if we use the Manhattan 
Distance.

35



The Manhattan Distance

Another way to compute the distance 
between cells is the Manhattan distance.

Euclidean:
dist = (goal_i − i)2+(goal_ j − j)2

Manhattan:
dist = goal_i − i + goal_ j − j (i, j)

(goal_i, goal_j)

goal_i - i

goal_j - j

The name “Manhattan distance” comes from the grid layout of city blocks in Manhattan. The 
shortest path from one location to another requires walking along the grid. 36



The Manhattan Distance

Another way to compute the distance 
between cells is the Manhattan distance.

Euclidean:
dist = 3 − 0 2 + (3 − 1)2

= 3 2 + (2)2= 13
Manhattan:

dist = 3 − 0 + 3 − 1
= 3 + 2 = 5

(0, 1)

(3, 3)

3

2

37

13



Manhattan Distance Transform

The Manhattan distance transform 
involves computing the Manhattan 
distance from each cell to the 
nearest occupied cell.

The Manhattan distance transform 
is less “smooth” than the Euclidean 
version, but they look similar.

38



Example: Manhattan Distance Transform

It turns out that the Manhattan 
distance transform is good enough 
to do potential field navigation.

And the algorithm for calculating it 
is much faster!

39



Manhattan Distance Transform Algorithm

Imagine our robot has a small 2D 
map that looks like this one.

40



Manhattan Distance Transform Algorithm

Imagine our robot has a small 2D 
map that looks like this one.

We can convert this to a binary map 
which has value 1 if the cell is 
occupied, and 0 is the cell is free.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

41



Manhattan Distance Transform Algorithm

The Manhattan distance transform 
needs to scan along the rows and 
columns to find the nearest 
obstacle.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 03

42



Manhattan Distance Transform Algorithm

The Manhattan distance transform 
needs to scan along the rows and 
columns to find the nearest 
obstacle.

We will start with the simpler case 
of a 1D distance transform by 
looking at one row.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

43



1D Manhattan Distance Transform

We can treat one row of the map as a 1D binary map:

The distance transform is the distance from each free cell (0) to the 
nearest occupied cell (1). We can write down the answer by inspection:

0 1 0 0 0 1

44



1D Manhattan Distance Transform

We can treat one row of the map as a 1D binary map:

The distance transform is the distance from each free cell (0) to the 
nearest occupied cell (1). We can write down the answer by inspection:

0 1 0 0 0 1

0 0

These cells are occupied, so their distance to 
the nearest occupied cell is zero

45



1D Manhattan Distance Transform

We can treat one row of the map as a 1D binary map:

The distance transform is the distance from each free cell (0) to the 
nearest occupied cell (1). We can write down the answer by inspection:

0 1 0 0 0 1

1 0 0

One cell away from 
an occupied cell

46



1D Manhattan Distance Transform

We can treat one row of the map as a 1D binary map:

The distance transform is the distance from each free cell (0) to the 
nearest occupied cell (1). We can write down the answer by inspection:

0 1 0 0 0 1

1 0 1 0

One cell away from 
an occupied cell

47



1D Manhattan Distance Transform

We can treat one row of the map as a 1D binary map:

The distance transform is the distance from each free cell (0) to the 
nearest occupied cell (1). We can write down the answer by inspection:

0 1 0 0 0 1

1 0 1 1 0

One cell away from 
an occupied cell

48



1D Manhattan Distance Transform

We can treat one row of the map as a 1D binary map:

The distance transform is the distance from each free cell (0) to the 
nearest occupied cell (1). We can write down the answer by inspection:

0 1 0 0 0 1

1 0 1 2 1 0

Two cells away from 
an occupied cell

We need an algorithm to compute the distance transform on a computer.
49



1D Manhattan Distance Transform

1. Initialize.
• For each cell, set distance transform 

DT to 0 if the cell is occupied, and 
infinity if the cell is free

∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

50



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1) ∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 ∞ ∞ ∞ 0DT =

Forward pass:

DT[1] = min(0, ∞+1)

51



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1) ∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 ∞ ∞ ∞ 0DT =

Forward pass:

DT[2] = min(∞, 0+1)

1

52



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1) ∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 ∞ ∞ 0DT =

Forward pass:

DT[3] = min(∞, 1+1)

21

53



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1) ∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 ∞ 0DT =

Forward pass:

DT[4] = min(∞, 2+1)

32

54



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1) ∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 3 0DT =

Forward pass:

DT[5] = min(0, 3+1)

3

55



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1)

3. Backward pass:
• For cells i=N-2 to 0:

DT[i] = min(DT[i], DT[i+1] + 1)

∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 3 0DT =

Forward pass:

∞ 0 1 2 3 0DT =

Backward pass:

DT[4] = min(3, 0+1)

1

56



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1)

3. Backward pass:
• For cells i=N-2 to 0:

DT[i] = min(DT[i], DT[i+1] + 1)

∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 3 0DT =

Forward pass:

∞ 0 1 2 1 0DT =

Backward pass:

DT[3] = min(2, 1+1)

1

57



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1)

3. Backward pass:
• For cells i=N-2 to 0:

DT[i] = min(DT[i], DT[i+1] + 1)

∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 3 0DT =

Forward pass:

∞ 0 1 2 1 0DT =

Backward pass:

DT[2] = min(1, 2+1)
58



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1)

3. Backward pass:
• For cells i=N-2 to 0:

DT[i] = min(DT[i], DT[i+1] + 1)

∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 3 0DT =

Forward pass:

∞ 0 1 2 1 0DT =

Backward pass:

DT[1] = min(0, 1+1)
59



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1)

3. Backward pass:
• For cells i=N-2 to 0:

DT[i] = min(DT[i], DT[i+1] + 1)

∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 3 0DT =

Forward pass:

∞ 0 1 2 1 0DT =

Backward pass:

DT[0] = min(∞, 0+1)

1

60



1D Manhattan Distance Transform

1. Initialize to zero or infinity.
2. Forward pass:

• For cells i=1 to N-1:
DT[i] = min(DT[i], DT[i-1] + 1)

3. Backward pass:
• For cells i=N-2 to 0:

DT[i] = min(DT[i], DT[i+1] + 1)

How many computations did we do?

∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 3 0DT =

Forward pass:

1 0 1 2 1 0DT =

Backward pass:

N loops

N-1 loops

N-1 loops

Total: N + 2 * (N – 1) ≈ 3N
61



1D Manhattan Distance Transform

This algorithm is faster, especially for 
large graphs!

Note: Manhattan distance and 
Euclidean distance are the same in 
1D.

Oct 13 In-Class Activity: 1D & 2D 
Manhattan distance transform.

∞ 0 ∞ ∞ ∞ 0

Initialization step:

0 1 0 0 0 1

DT =

∞ 0 1 2 3 0DT =

Forward pass:

1 0 1 2 1 0DT =

Backward pass:

62



2D Manhattan Distance Transform

Back to our 2D map… 

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

63



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

64



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0

0 0

0

0 0

0 0

All the occupied cells 
have value zero.

65



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0

0 0

0

0 0

0 0

DT[0, 0] = 1 + 1

2

1

1

66



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0

0 0

0

0 0

0 0

2

DT[0, 1] = 1 + 0

1
1

67



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0

0 0

0

0 0

0 0

2 1

DT[0, 2] = 1 + 0

1
1

68



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0

0 0

0

0 0

0 0

2 1 1

DT[0, 3] = 1 + 1

2
1

1

69



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0

0 0

0

0 0

0 0

2 1 1 2

DT[0, 4] = 2 + 1

3
1

2

70



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0

0 0

0

0 0

0 0

2 1 1 2 3

DT[0, 5] = 3 + 1

4
1

3

71



2D Manhattan Distance Transform

Let’s do our 2D Manhattan distance transform by inspection:

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

2 1 2 2 1 0

1 0 1 2 1 0

1 0 1 2 2 1

1 0 0 1 2 2

1 0 0 1 2 3

2 1 1 2 3 4

It turns out that we can use a modification of the algorithm for the 1D transform 
to compute our 2D Manhattan distance transform.

72



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity. 

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

73



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

DT[0, 1] = min(∞, ∞+1)
74



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

DT[0, 2] = min(∞, ∞+1)
75



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

DT[1, 0] = min(∞, ∞+1)
76



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

DT[1, 1] = min(0, ∞+1, ∞+1)
77



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

DT[1, 2] = min(0, 0+1, ∞+1)
78



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

DT[1, 3] = min(∞, 0+1, ∞+1)

1

79



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 1 ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

DT[1, 4] = min(∞, 1+1, ∞+1)

2

80

1



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ ∞ ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ 0

∞ 0 ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞ ∞

∞ 0 0 1 2 ∞

∞ ∞ ∞ ∞ ∞ ∞

DT[1, 4] = min(∞, 2+1, ∞+1)

3

81

2



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ 1 2 3 4 0

∞ 0 1 2 3 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

82



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ 1 2 3 4 0

∞ 0 1 2 3 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

DT[5, 4] = min(4, 0+1)

1

83



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ 1 2 3 1 0

∞ 0 1 2 3 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

DT[5, 3] = min(3, 1+1)

2

84

1



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ 1 2 2 1 0

∞ 0 1 2 3 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

2

DT[5, 2] = min(2, 2+1)
85



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ 1 2 2 1 0

∞ 0 1 2 3 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

DT[5, 1] = min(1, 2+1)
86



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

∞ 1 2 2 1 0

∞ 0 1 2 3 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

DT[5, 0] = min(∞, 1+1)

2

87



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

2 1 2 2 1 0

∞ 0 1 2 3 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

DT[4, 5] = min(0, 0+1)
88



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

2 1 2 2 1 0

∞ 0 1 2 3 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

DT[4, 5] = min(3, 1+1, 0+1)

1

89



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

2 1 2 2 1 0

∞ 0 1 2 1 0

∞ 0 1 2 3 4

∞ 0 0 1 2 3

∞ 0 0 1 2 3

∞ ∞ ∞ ∞ ∞ ∞

1

DT[4, 5] = min(2, 2+1, 1+1)
90



2D Manhattan Distance Transform

1. Initialize: Set occupied cells to zero and free 
cells to infinity.

2. Forward pass:
• For i=1 to N-1:

DT[i] = min(DT[i], Bottom neighbor + 1, Left neighbor +1)
If there is not bottom or left neighbor, ignore.

3. Backward pass:
• For i=N-2 to 0:

DT[i] = min(DT[i], Top neighbor + 1, Right neighbor +1)
If there is no top or right neighbor, ignore.

0 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

2 1 2 2 1 0

1 0 1 2 1 0

1 0 1 2 2 1

1 0 0 1 2 2

1 0 0 1 2 3

2 1 1 2 3 4

How many computations did we do?
91

Total: N + 2 * (N – 1) ≈ 3N



Manhattan Distance Transform

You will compute the Manhattan 
distance transform in P2.2.

src/potential_field/distance_transform.cpp

92



Project 2: Potential Field Navigation

 Build a map of environment
 Form attraction potential to goal
 Form repulsion potentials away from obstacles
 Add potentials together into potential field
 Local search over potential field to navigate

Next time!

93


	Potential Field Navigation:�The Distance Transform
	Project 2: Potential Field Navigation
	Last time…
	Project 2: Potential Field Navigation
	Project 2: Potential Field Navigation
	Attraction Potential
	Attraction Potential
	Recall: Storing a Map in C++
	Attraction Potential
	Attraction Potential
	Attraction Potential
	Attraction Potential
	Attraction Potential
	Attraction Potential
	Attraction Potential
	Attraction Potential
	Attraction Potential
	Attraction Potential
	Example: Attraction Potential
	Dealing with Obstacles
	Dealing with Obstacles
	The Repulsion Potential
	The Distance Transform
	The Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	Computing the Distance Transform
	The Manhattan Distance
	The Manhattan Distance
	The Manhattan Distance
	Manhattan Distance Transform
	Example: Manhattan Distance Transform
	Manhattan Distance Transform Algorithm
	Manhattan Distance Transform Algorithm
	Manhattan Distance Transform Algorithm
	Manhattan Distance Transform Algorithm
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	1D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	2D Manhattan Distance Transform
	Manhattan Distance Transform
	Project 2: Potential Field Navigation

