Autonomous Navigation:
Global Searc

B o V-

-—-’\b—ﬁ

Roboﬁcs102

Introduction to Al and Programming
University of Michigan and Berea College
Fall 2021

https://app.emaze.com/@AIRRTROT/idea-2-the-robot-maze#1

A", Jordan Wong
. Published June 19, 2015

IEEE Micromouse

Autonomous mouse that can traverse any 16 by 16 maze.

&) Full instructions provided © 1762

https://www.hackster.io/jordanjameswong/micromouse-83dab7

2011 All Japan micromouse contest: Ng BengKiat 4th Fast RUN
https://www.youtube.com/watch?v=CLwICJKV4dw

@ micromouse run > Privacy, simplified. v w|z v

Q Al jes D Videos News @ Maps & Shopping Settings ~

All regions ~ Safe search: moderate ~ Any time ~ Allsizes ¥ Allcolors ~ Alitypes v Alllayouts v All Licenses ~

B

1280 x 720 . 480 %360 p 1280 x 720

Micromouse "Venus" - Official Search Run - Y... micromouse test run 23 - YouT... micromouse test run 22 - YouTube 2012 Californima Micromouse Competition 1... Micromouse Practice Run - YouTube
youtube.com youtube.com youtube.com youtube.com youtube.com

480 %360 1280 x 720 l‘ i .\ 1280 %720

[4K] Practice Run for Micromouse GreenGiant 5... vacuum_micromouse_test_run - YouT... Micromouse "Xiphosura" - Test Run - YouTube IEEE Micromouse "Run For Your Money" - Full Test ... 2013 All Japan Mic...
youtube.com youtube.com youtube.com youtube.com micromouseusa.com

|
iL 5

| 480 %360 e i 1280 x 720 1280 x 720 480 % 360

micromouse test run 17 - YouTube IEEE Micromouse "Run For Your Money" - My pr... Micromouse Green Giant 510V run a 2016 All A... CSU Chico Micromouse Final Run on Vimeo micromouse test run 18 - YouTube
youtube.com reddit.com youtube.com vimeo.com youtube.com

Our goal

Our goal

Give you the power of autonomous navigation

M.

Our goal

Give you the power of autonomous navigation

’ .

Our goal

Give you the power of autonomous navigation

: .

Autonomous Navigation
"

Goal location

Start location

Autonomous Navigation

by global search

Goal location

Think of our robot’s navigation
as solving a maze

== .
) - A
y N
[.
]
¢

Start location

Autonomous Navigation
by global search '

™

Goal location

Think of our robot’s navigation
as solving a maze

Start location

Autonomous Navigation
by global search

Goal location

Think of our robot’s navigation
as solving a maze

Start location

What options do we have
for navigating our robot?

y g !

What options do we have
for navigating our robot?

Sl

Just move randomly

http://signaltheorist.com/?p=91

& - ; N o "~
- "b‘" - ',4 o & v- \\‘
o - e v\wmvl
pe ’ , ‘ ‘ ,g ‘i& “ ‘\‘ '-
Mgy e AT L ,_‘__ﬂ.’,
o Random walk algonfhms

What options do we have
for navigating our robot?

Sl

Universityiﬁdﬁér Challenge

Bug algorithms

MRover

Build a map to guide us

Project 2:
Potential
Fields

Autonomous
navigation to a
goal location

Build a map to guide us

| Goal location

What path would a
potential field produce?

Start location

Build a map to guide us

| Goal location

What path would a
potential field produce?

Start location

| Goal location

What path would a
potential field produce?

Local minimum

(or dead end)

Start location

What options do we have
1—34 for navigating our robot?

Build a map to guide us

Consider all possible paths

Project 3:
A*
Pathfinding

Autonomous
navigation to a
goal location

Can we create an algorithm that

will solve this maze?

Goal location

How can we avoid
, local minima ?
Start location

Can we create an algorithm that

will solve this maze?

|
—

r 'l_l—l‘—E_l
InnElen
| |

=
1 _
T]

[.
L

Can we create an algorithm that

will solve this maze?

|
=] =
AT K e
ErE e
UG L= ':h‘ and this one?
| |
—_ | C |
El=nsih

xefer

subscribe - archives - iunctura - projects

Maze Generator

Columns: |80
Cell Size: 8 | Anfractuosity: ® Low O High
Generate || Solve |

Rows: |50 Maze Id: odijjhfmoljdjodgodg

l_—_]r‘: _l% H—d—: _ILIIIIL|

1

https://www.xefer.com/maze-generator

xefer

subscribe - archives - iuncturz - projects

Maze Generator

Rows: 50 | MazeId: odijjhfmoljdjodgodg
Columns: 80 |

CellSize: 8 | Anfractuosity: ® Low O High
~GenerateJ Solve

How does this

algorithm work?

https://www.xefer.com/maze-generator

xefer

subscribe - archives - iuncturz - projects

Maze Generator

Rows: 50 | MazeId: odijjhfmoljdjodgodg
Columns: 80 |

CellSize: 8 | Anfractuosity: ® Low O High
~GenerateJ Solve

Represent the
map as a graph

How does this
algorithm work?

https://www.xefer.com/maze-generator

xefer

subscribe - archives - iuncturz - projects

Maze Generator

Rows: 50 Maze Id: odijjhfmoljdjodgodg
Columns: 80 |
Cell Size: 8 | Anfractuosity: ® Low O High

| Generate | Solve

Represent the
map as a graph

How does this

algorithm work? Search over all

possible paths

https://www.xefer.com/maze-generator

B Search over all

Project 3:
A*
Pathfinding

Autonomous
navigation to a
goal location

Search over all possible paths‘

Project 3:
A*
Pathfinding

Autonomous
navigation to a
goal location

Project 3:

A* Search over all possible paths
Pathfinding
Already done from Project 2
Autonomous J ~
havigation to a & Build map of environment ™

goal location

ZRepresent map as graph with a grid layout
[] store parent of each node

along route to start location
[[] Store path distance at each node

along route to start location

] Global search to find routing

Micromouse represents maze as a grid graph then
performs “Floodfill” to find path to goal

3 Micro Mouse Flood Fill Algoritm Demo =[] x]

I N S B B S S S S S S S S E— Maze Editing Tools CUHK
97 || 96 || 95 || 94 || 9z || 92 || 91 || 92| 93 || 94| 95| 96 || 97| 8|l 9| s Micromouse
Flood Fill
Algorithm Demo
2003

Designed by MY WWong

IEEE Micromouse

nouse that can traverse any 16 by 16 maze

w |
» | ¥ |8
? |3 |8
g

z | X
L |la |a

g3

5|8

" Show Value Maze 2

¢ Blank

R S S S S YA S E— —
2 = = = =} = @) = =) -

[V Show Given Maze

Speed Control
High Low

https://medium.com/@austinxiao/ieee-micromouse-2016-software-design-496653ff104d

Micromouse represents maze as a grid graph then
performs “Floodfill” to find path to goal

Result from pathfinding:

3 Micro

Mouse Flood Fill Algoritm Demo

O R S S S YA S S —
@ = = = =} = @) = =) = -

i

CUHK
Micremouse
Flood Fill
Algorithm Demo
2003

Designed by MY Wong

Load Maze

Save Maze

" Show Value Maze 2

" Blank

[V Show Given Maze

Speed Control
High Low
| ol

https://medium.com/@austinxiao/ieee-micromouse-2016-software-design-496653ff104d

Micromouse represents maze as a grid graph then
performs “Floodfill” to find path to goal

Result from pathfinding:

Provides cell-to-cell
routing along found path

A_____________

E! 9 || g8
1 N
M IS
15 M IES
94
N EW EE
e I o2
g1
N EEl
88 89
8 || a7 || o8
-~ _ k1

https://medium.com/@austinxiao/ieee-micromouse-2016-software-design-496653ff104d

Micromouse represents maze as a grid graph then
performs “Floodfill” to find path to goal

Result from pathfinding: ﬂww
iy —
Provides cell-to-cell hlf
routing along found path L] g
Distance along path | N !k_— % %
at each cell 23108 3 pp g oy gl b g by
—I:hﬁﬂﬁllﬂr 5

https://medium.com/@austinxiao/ieee-micromouse-2016-software-design-496653ff104d

Micromouse represents maze as a grid graph then
performs “Floodfill” to find path to goal

Result from pathfinding:

Provides cell-to-cell
routing along found path

63 64 65 66 67 68 69

D’S,‘ance along path 59 60 61 62|49 48|43 42|37 36

af each cell 2 3|s8[s5 54]51 50|47|44]41|38]35]32 a1]28]2
1] 4|57 s6]53 52 |46 45|40 39]34 33]30 2920

0|5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Remember what this graph looks
like for our robot maps

Robot map is stored as an image
and represented as a graph

Real world SLAM ovuiput

Robot map is stored as an image
and represented as a graph

A vector of cells over
robot locations

Robot map is stored as an image

and represented as a graph

A vector of cells over

robot locations

Every cell has a
node in the graph

Robot map is stored as an image

and represented as a graph

w 5

) eOO
235 ddb
SR 0 50
X SO < v 0
O m.a.m
-3 I =
fulalis: o9 =
O O O Aoo
e Y

W C

A vector of cells over
robot locations
Every cell has a

node in the graph

the cell

Robot map is stored as an image
and represented as a graph

A vector of cells over s+
robot locations ISHASEBASHASE | dsdBe rignx: e
CELaiaananandndndndndnd ® RdLdLdLALAL ortgin_y. ©.
LALALELSL AL LS +ii iiiii occupi ed: false
Every cell has a pSde . il dda
4 D aats * toeeenane
node in the graph pibdididid - LLaLaLaLitd
pgRaa:. - jnasa: A h nod
: BEIEEEBEEERERALLLL: grapn noce
Every pair of R naaaaaaaaaaNes stores a struct of
. . b bieeateostton))
neighboring cells péidbEb bbb bbb aranananand information about

shares an edge in the cell
the graph

:

VA NTANTARNY,
gt N N |
N TN

Diagonals included

hdbdhdhdhd

ool oo

RSidadng

RSbdbendpd

R aLaRanaRas onan an)

ESTIRSTin:
RSTIRSIin:
RSTIRSIin:
RSidicadis

++
++

e
EStdbeng
EStdbcns
EStdbcns
Ratdband

Raidbebabdbandbdbandpans

SEEEL

EEiaiEhehabdbeadbbendb bondbdbandpabe
LEiaiEhehabdbcadbdbendb bandbdbandpabe
BEiaiEhebabdbebdbdbendb bandbdbandpane

LEbcbabdbEbebababdbababab b abane

$34 444444 41s
++ ,
4444

4-connected or 8-connected

sTeTereTeTote]

Grid graphs are typically either

[Siatataiaians
[Siatataiaiats

[Siaiataiatats
4

e

“¢ﬂﬁyiy_
“NSEW”

eVl @) - LI Why are hexagons the bestagons ?

<= (@] O 8 =¥ https://www.youtube.com/watch?v=thOifuHs6eY

= [» YouTube

But not the hexagon!

P Pl) 136/926

Hexagons are the Bestagons

[] store parent of each node

along route to start location

[[] store path distance at each node
along route to start location

oTeTere
A vector of cells over s
: Rdndadbe
robot locations 4446943434 6020 4444+
RaiSbalandbatabandndbabe ® Rabdbanandnd
RabSbaLandbatataLdRdbabe ® LbababaRdRd
1881 SR ESS
Every cell has a s34 434 00000
. Rdidisband ® babendndnane
node in the graph bidididie o Rabdbdididie
Rdidasia Rdndbans
Rdiana Rdndaana
: R R e R R saas
Every pair of RaLaialababababaLdndndndRdRabandbanand
. . Raldiaiandiaiabandbababandndbabendndnd
neighboring cells Ralabaiaiandndbatabarandhanasana

shares an edge in
the graph

Path expressed as
the route to
navigate at a node

origin x: 2.2
origin_y: 0.3
occupi ed: false
parent: ?7?

di stance: ??

A graph node
stores a struct of
information about
the cell

Assume robot planning a route from a
given start location to a given goal location

?

How does
Floodfill
compufte

. parent and
. di stance

for each node?

Assume robot planning a route from a
given start location to a given goal location

?

How does
Floodfill Grow outward
compute from the node
. parent and at the start
. di stance location

for each node?

Begin from The start is the “root” of our search graph
start node '

with
no parent and L]
zero distance

Begin from
start node
with
no parent and
zero distance

All neighbors
of start are
“visited”

Begin from
start node
with
no parent and
zero distance

All neighbors
of start are
“visited”

And assigned
one plus the
smallest
distance

Then, visit the
neighbors of
nodes just
visited

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

10

HIWIN| W[

WDIN =N W

WIN| =N |®

AOIN |~

A b DO

[MS, BIF S, RN

oG o (N

N (O [N |0

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

16

16

17

17

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

10

HIWIN| W[

WDIN =N W

WIN| =N |®

AOIN |~

A b DO

[MS, BIF S, RN

oG o (N

N (O [N |0

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

17

18

18

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

10

HIWIN| W[

WDIN =N W

WIN| =N |®

AOIN |~

A b DO

[MS, BIF S, RN

oG o (N

19

N (O [N |0

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

19

17

18

19

18

19

19

19

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

10

HIWIN| W[

WDIN =N W

WIN| =N |®

AOIN |~

A b DO

[MS, BIF S, RN

20

oG o (N

19

~N|o|N |

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

19

17

18

19

20

18

19

20

20

19

19

20

20

20

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

10

HIWIN| W[

WDIN =N W

WIN| =N |®

AOIN |~

A b DO

21

[MS, BIF S, RN

20

oG o (N

19

N (O [N |0

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

19

17

18

19

20

18

19

20

21

21

20

19

19

20

21

21

20

20

21

21

21

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

10

HIWIN| W[

WDIN =N W

WIN| =N |®

AOIN |~

22

A b DO

21

[MS, BIF S, RN

20

oG o (N

19

N (O [N |0

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

19

17

18

19

20

18

19

20

21

22

22

21

20

19

19

20

21

22

22

21

20

20

21

22

22

21

21

22

22

22

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

10

HIWIN| W[

WDIN =N W

WIN| =N |®

23

AOIN |~

22

A b DO

21

[MS, BIF S, RN

20

oG o (N

19

~N|o|N |

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

19

17

18

19

20

18

19

20

21

22

23

23

22

21

20

19

19

20

21

22

23

23

22

21

20

20

21

22

23

23

22

21

21

22

23

23

22

22

23

23

23

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

10

HIOIN W[

WDIN =N W

24

WIN| =N |®

23

AOIN |~

22

A b DO

21

[MS, BIF S, RN

20

oG o (N

19

~N|o|N |

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

19

17

18

19

20

18

19

20

21

22

23

24

24

23

22

21

20

19

19

20

21

22

23

24

24

23

22

21

20

20

21

22

23

24

24

23

22

21

21

22

23

24

24

23

22

22

23

24

24

23

23

24

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

o

10

HIOIN W[

WDIN =N W

25

24

WIN| =N |®

23

AOIN |~

22

A b DO

21

[MS, BIF S, RN

20

oG o (N

N (O [N |0

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

19

17

18

19

20

18

19

20

21

22

23

25

24

25

25

24

23

22

21

20

19

20

21

22

23

24

25

25

24

23

22

21

20

20

21

22

23

24

25

25

24

23

22

21

21

22

23

24

25

25

24

23

22

22

23

24

25

25

24

23

23

24

25

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

10

11

o

10

HIOIN W[

WDIN =N W

25

24

WIN| =N |®

23

AOIN |~

22

A b DO

21

[MS, BIF S, RN

20

oG o (N

N (O [N |0

12

10

11

10

11

12

11

12

13

12

13

14

15

13

13

14

15

16

14

14

15

16

17

15

15

16

17

18

16

18

16

17

18

19

17

18

19

20

18

19

20

21

22

23

27

26

27

25

26

27

24

25

26

27

26

25

24

23

22

21

20

19

20

21

22

23

24

25

26

27

27

26

25

24

23

22

21

20

20

21

22

23

24

25

26

27

27

26

25

24

23

22

21

21

22

23

24

25

26

27

27

26

25

24

23

22

22

23

24

25

26

27

27

26

25

24

23

23

24

25

26

27

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

4|3[2|3]4|5]6]7[8]9]10[11]12
3|2[1]2][3]4|5][6]7][8]9]10[11
21|l 1][2[3]4[5]6|7[8]9]10
3/2]1]2[3[4|5]6[7][8]9]10[11
4/3[2]3]a5]6 9 [10[11]12
10[11]12[13
12[11[12[13[14]15
13[12]13[14[1516
14]13[14[15[16]17 28
15[14[15/16[17| 18 |l 28|27[28
16/15/16[17/18[19 26(27/28
16[17/18[19]20 25(26(27|28
25|24(23|22]21(2019]18/17]18[19|20] 21|22 23|24 | 25] 26 27| 28
26]25|24]23|22[21|20[19/18[19|20|21]22]23]24 | 25]26 | 2728
27|26|25|24]23]22|21[20|19] 20|21 22[23|24] 25|26 27[28
28|27(26|25(24|23|22[21|20]21]2223[24 25]26 27|28
2827|2625/ 24|23 |22[21|22[2324|2526 27|28
28)27]26|25] 24|23/ 22]23]24] 25/ 26| 27] 28

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

4|3[2|3]4|5]6]7[8]9]10[11]12
3|2[1]2][3]4|5][6]7][8]9]10[11
21|l 1][2[3]4[5]6|7[8]9]10
3/2]1]2[3[4|5]6[7][8]9]10[11
4/3[2]3]a5]6 9 [10[11]12
10[11]12[13
12[11[12[13[14]15
13[12]13[14[1516 29
14]13]14[15[16|17 [Jill 20[28| 20
15[14[15/16]17| 18 [l 28 27| 28| 20
16/15/16[17/18[19 26|27/28|29
16[17/18[19]20 25(26|27| 28|29
25|24(23|22]21(2019[18|17]18]19|20[21[22] 23] 24| 25[26 |27] 28] 29
26]25|24]23|22[21|20[19/18]19|20|21]22|23] 24| 25]26 | 27| 28] 29
2726|2524 23] 22|21]20] 19 20(21]22] 23|24 | 25(26| 27] 28] 29
28|27(26|25]24|23|22[21|20]21(22|23]24 25 26[27| 28] 29
29]28(27(26|25(24|23]22|21[22|23] 24| 25]26] 27 28] 29
29|28]27/26]25/24 23] 22| 23] 24| 25|26 27|28 29

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

4|3[2|3]4|5]6]7[8]9]10[11]12
3|2[1]2][3]4|5][6]7][8]9]10[11
21|l 1][2[3]4[5]6|7[8]9]10
3/2]1]2[3[4|5]6[7][8]9]10[11 33
4al3/2[3la]5]6 9 [10[11]12 33[32|33
10[11]12[13 32(31|32[33
12[11[12[13]14 15 [l 31 30|31 |32[33
13[12/13[14]15| 16 [l 30[29| 30|31 32|33
14]13[14[15[16|17 |Jill 20[28|29[30|31[32|33
15[14[15/16]17| 18 |l 28|27[2829303132
16/15/16[17/18[19 26|27/2829(30|31
16[17/18[19]20 25(26|27|28/29(30
25|24(23|22]21(2019[18|17]18]19|20[21[22] 23] 24| 25[26 |27] 28] 29
26]25|24]23|22[21|20[19/18[19|20|21]22]23] 24 | 25[26 | 27] 28] 29[30
27]26|25|24]23]22|21]20[1920[21| 22] 23] 24| 25] 26| 27| 28] 29| 30| 31
28|27(26|25]24|23|22[21|20]21]22]23]24 25] 2627 28] 29 30[3132
29]28(27(26 25|24 |23[2221[22|23] 2425|2627 28] 29| 30[31]32[33
2928/27|26] 25|24 |23/ 22|23] 24 25| 26] 27| 28] 29|30

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

4|3[2|3]4|5]6]7[8]9]10[11]12
3|2[1]2][3]4|5][6]7][8]9]10[11
21|l 1][2[3]4[5]6|7[8]9]10 34
3/2]1]2[3[4|5]6[7][8]9]10[11 34]33|34
4al3/2[3la]5]6 9 [10[11/12 |l 34 33[32|33[34
10[11]12[13 32|31/32|33[34
12[11[12[13[14 15 [l 313031 |32[33| 34
13[12/13[14]15| 16 [l 30(29|30(3132(33 |34
14]13/14[15] 16|17 |Jll 20[28|29[30|31[32|33
15[14[15/16]17| 18 |l 28|27[2829303132
16/15/16[17/18[19 26|27/2829(30|31
16[17/18[19]20 25(26|27|28/29(30
25|24(23|22]21(2019[18|17]18]19|20[21[22] 23] 24| 25[26 |27] 28] 29
26]25|24]23|22[21|20[19/18[19|20|21]22]23] 24 | 25[26 | 27] 28] 29[30
27]26|25|24]23]22|21]20[1920[21| 22] 23] 24| 25] 26| 27| 28] 29| 30| 31
28|27(26|25]24|23|22[21|20]21]22]23]24 25] 2627 28] 29 30[3132
29]28(27(26 25|24 |23[2221[22|23] 2425|2627 28] 29| 30[31]32[33
2928/27|26] 25|24 |23/ 22|23] 24 25| 26] 27| 28] 29|30

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

4|3[2|3]4|5]6]7[8]9]10[11]12
3|2[1]2][3]4|5][6]7][8]9]10[11 35
21|l 1][2[3]4[5]6|7[8]9]10 35/34|35
3/2]1/2[3[4|5[6|7]8]9[10[11|l35/34]33|34[35
4al3/2[3la]5]6 9 [10[11]12 |l 34 33[32|33[34 35
10[11]12[13 32(31(32(33[34|35
12[11[12[13[14] 15 |l 31/30[31[32(33[34 |35
13[12/13[14]15| 16 [l 30(29|30(3132(33 |34
14]13/14[15] 16|17 |Jll 20[28|29[30|31[32|33
15[14[15/16]17| 18 |l 28|27[2829303132
16/15/16[17/18[19 26|27/2829(30|31
16[17/18[19]20 25(26|27|28/29(30
25|24(23|22]21(2019[18|17]18]19|20[21[22] 23] 24| 25[26 |27] 28] 29
26]25|24]23|22[21|20[19/18[19|20|21]22]23] 24 | 25[26 | 27] 28] 29[30
27]26|25|24]23]22|21]20[1920[21| 22] 23] 24| 25] 26| 27| 28] 29| 30| 31
28|27(26|25]24|23|22[21|20]21]22]23]24 25] 2627 28] 29 30[3132
29]28(27(26 25|24 |23[2221[22|23] 2425|2627 28] 29| 30[31]32[33
2928/27|26] 25|24 |23/ 22|23] 24 25| 26] 27| 28] 29|30

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

10

11

12

38

38

37

38

37

36

37

38

10

11

37

36

35

36

37

38

(o]

10

36

35

34

35

36

37

38

O | >

WIN|=N|®

25

24

WDIN =N W

23

HOIN |

22

Qb DO

21

oG s~ a|o

20

oG o (N

N[O (N[00

12

10

11

35

34

33

34

35

36

37

10

11

12

34

33

32

33

34

35

36

11

12

13

32

31

32

33

34

35

36

12

13

14

15

31

30

31

32

33

34

35

13

13

14

15

16

30

29

30

31

32

33

14

14

15

16

17

29

28

29

30

31

32

33

15

15

16

17

18

16

16

17

18

19

17

18

19

20

18

19

20

21

22

28

23

27

28

29

30

31

32

26

27

28

29

30

31

25

26

27

28

29

30

24

25

26

27

28

29

26

25

24

23

22

21

20

19

20

21

22

23

24

25

26

27

28

29

30

27

26

25

24

23

22

21

20

21

22

23

24

25

26

27

28

29

30

31

28

27

26

25

24

23

22

21

22

23

24

25

26

27

28

29

30

31

32

29

28

27

26

25

24

23

22

23

24

25

26

27

28

29

29

28

27

26

25

24

23

24

25

26

27

28

29

30

30

31

32

33

Once goal
node reached,
perform local
search back to

start

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

38
38|37
4(3|2|3(4|5|6(7|8|9]|10(11|12 38 (37 |36 38
3(2|{1|2(3|(4|5|6(7|8|9(10|11 37 (36|35 37|38
210 9 (10 36 (35|34 36|37 |38
3(2|1|2(3|(4|5|6|7)|8 10|11 35(34 |33 35|36 |37
4(3|2|3(4(5|6 9 11|12 34(33 |32 34 (35|36
10 12|13 32|31 33|34 (35|36
12|11 13|14|15 31|30 32|33|34|35
13|12 14|15|16 30|29 31|32(33|34
14|13 15|16 |17 29|28 30(31(32|33
15|14 16|17 |18 28|27 29(30(31|32
16|15 17 18|19 26 2829|3031
16 181920 25 27|28|29|30
25|24 |23|122|21(20|19|18 |17 26|27 (28|29
26|25|24123|22(21|20|19(18|19]|20(21 (22|23 |24 |25|26|27 |28 29|30
27(26|25|24|23(22|21|20(19|20|21 (22|23 |24|25(26 |27 |28 |29 |30 |31
28|27|26|125|24 (23|22|21|20|21|22(23|24|25|26 |27 |28|29 |30 |31 |32
29|28|27|26|25(|24|23|22|21|22|23 |24 (25|26 (27 |28 |29|30|31|32|33
2928|2726 |25(24|23|22(23|24|25|26 |27 |28 |29 |30

Once goal
node reached,
perform local
search back to

start

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

38
38| 37 [
4/3/2|3/4|5|/6|7|8|9]|10(11|12 38|37 |36 38
3/2(1|/2|/3/4|5|/6|7|8|9] 10|11 37|36 |35 [N 37 |38
210 4 ¢ N 9 (10 36 |35|34 36|37 |38
3/2({1|/2|3|4|5|6|7 |8 KMN10|11 35|34 |33 24 35 | 36 | 37
4/3/2|3|4|5|6 9 Wil 11|12 34|33 |32 34|35|36
10 12|13 32|31 33|34 35|36
12|11 13|14 |15 31|30 32|33|34|35
13|12 14 15|16 30|29 [l 31|32 (33|34
14 |13 REN 15|16 |17 29|28 I:} 30|31 (32|33
15|14 16|17 |18 28|27 p2:3 29|30 |31 |32
16 |15 R[4 17 |18 |19 26 28|29 30|31
16 18 (19|20 25 [PL) 27 |28 |29 |30
25|24 2322|2120 19|18 |17 RE:AREN-D 26|27 (28|29
26|25(24|23|22|21|20|19|18|19|20|21 22|23 |24 | 25|26 |27 |28 |29 |30
27|26 (25|24 |23 |22|21|20(19|20|21 |22 |23|24|25|26|27|28 |29 |30 |31
28|27 (2625|2423 22|21 |20|21|22|23 |24 |25|26 |27 |28|29 |30 |31 |32
29|28 |27|26|25|24 23|22 |21|22|23|24|25|26|27|28|29|30|31|32|33
2928|2726 |25|24 23|22 |23 |24 |25|26 |27 |28|29 |30

Once goal
node reached,
perform local
search back to

start

Assign parents
along path in
decreasing
order

Then, visit the
neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

38
38| 37 [
4/3/2|3/4|5|/6|7|8|9]|10(11|12 38|37 |36 38
3/2(1|/2|/3/4|5|/6|7|8|9] 10|11 37|36 | 35 [N 37 |38
210 4 ¢ M 9 (10 36 |35|34 36|37 |38
3/2({1|/2|3|4|5|6|7 |8 KN10|11 35|34 |33 |8 35 | 36 | 37
4/3/2|3|4|5|6 9 Wil 11|12 34|33 |32 34|35|36
10 12|13 32|31 33|34 35|36
12|11 13|14 |15 31|30 32|33|34|35
13|12 14 15|16 30|29 [l 31|32 |33 |34
14 |13 Rl 15|16 |17 29|28 I:) 30|31 (32|33
15|14 16|17 |18 28|27 p4:3 29|30 |31 |32
16 |15 R[4 17 |18 |19 26 28|29 30|31
16 18 (19|20 25 L) 27 |28 |29 | 30
25|24 2322|121 (20| 19|18 |17 RERNEAPD 26|27 (28|29
26|25(24|23|22|21|20|19|18|19|20|21 22|23 |24 | 25|26 |27 |28 |29 |30
27|26 (25|24 |23 |22|21|20(19|20|21 |22 |23|24|25|26|27|28 |29 |30 |31
28|27 (2625|2423 22|21 |20|21|22|23 |24 |25|26 |27 |28|29 |30 |31 |32
29|28 |27|26|25|24 23|22 |21|22|23|24|25|26|27|28|29|30|31|32|33
2928|2726 |25|24 23|22 |23 |24 |25|26 |27 |28|29 |30

Once goal
node reached,
perform local
search back to

start

Assign parents
along path in
decreasing
order

Once goal
node reached,
perform local
search back to

start

Then, visit the
neighbors of
nodes just
visited

Assign each Assign parents
one plus the along path in
smallest decreasing

distance order
Repeat for Form list of

next set of navigation
neighbors waypoints

Then, visit the

neighbors of
nodes just
visited

Assign each
one plus the
smallest
distance

Repeat for
next set of
neighbors

> 0> 0 >0 >0 >0 >0 >0 >0 >0 >0 >0 >0

0404040404 04040404040

v

Once goal
node reached,
perform local
search back to

start

Assign parents
along path in
decreasing
order

Form list of
navigation
waypoints

" [0 Global search to find routing Does this search algorithm
e have a name ?

Begi? from start node with no parent and zero distance

Visit the neighbors of nodes just visited <
\

Assign each one plus the smallest distance

1 » Repeat for next set of neighbors
Once+goal node reached, perform local search back to start
Assign parents along path in decreasing order

v L .
Form list of navigation waypoints

Brushfire Algorithm

Begi? from start node with no parent and zero distance

Visit the neighbors of nodes just visited <
\

Assign each one plus the smallest distance

1 » Repeat for next set of neighbors
Once+goal node reached, perform local search back to start
Assign parents along path in decreasing order

v L .
Form list of navigation waypoints

Brushfire Algorithm

Begi? from start node with no parent and zero distance

- Visit+the neighbors of nodes just visited <
/'Assign each one plus the smallest distance

1 » Repeat for next set of neighbors

Once+goal node reached, perform local search back to start
Assign parents along path in decreasing order

v L .
Form list of navigation waypoints

How to keep track of visited nodes?

Brushfire Algorithm

Begin from start node with no parent and zero distance

\
‘ Visit+the neighbors of nodes just visited <
/'Assign each one plus the smallest distance
1 » Repeat for next set of neighbors

Once+goal node reached, perform local search back to start
Assign parents along path in decreasing order

v L .
Form list of navigation waypoints

How to keep track of visited nodes? Quevue data structure

Quevue data structure

“First in, first out” (FIFO) data structure

my_queue

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

Enqueue my_queue

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

Enqueue my_queue

BlA

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

Enqueue my_queue

clBJA

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

my_queue

CJB]

Dequeue

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

Enqueue my_queue

DRclB

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

my_queue

pjc

Dequeue

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

my_queue

Dequeue

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

Enqueue my_queue

Enqueue to the back of the structure

Dequeue from the front of the structure

Quevue data structure

“First in, first out” (FIFO) data structure

my_queue

Enqueue to the back of the structure

Dequeue from the front of the structure

Begin from

start node
with

no parent and [l

zero distance

Going back to our example from the root node

Vi sit_queue

Begin from
start node
with
no parent and
zero distance

Vi sit_queue

All neighbors
of start are
“queued”

Begin from
start node
with
no parent and
zero distance

Vi sit_queue

All neighbors
of start are
“queued”

Begin from
start node
with
no parent and
zero distance

Vi sit_queue

All neighbors
of start are
“queued”

Enqueue

Begin from
start node
with
no parent and
zero distance

Vi sit_queue

BREA

All neighbors
of start are
“queued”

Enqueue

Begin from
start node
with
no parent and
zero distance

Vi sit_queue

HER

All neighbors

Enqueue

of start are
“queued”

Begin from
start node
with
no parent and
zero distance

Vi sit_queue

BEER

All neighbors

Enqueue

of start are
“queued”

Begin from
start node
with
no parent and
zero distance

Vi sit_queue

BEER

All neighbors
of start are
“queued”

and assigned
distance as

one plus start

node distance

Repeat for
next node in
the queuve

All neighbors
of current node
are “queuved”

and assigned
distance as one
plus current
node distance

Vi sit_queue

DEclB

Dequeue

current _node

Repeat for
next node in
the queue

All neighbors
of current node
are “queuved”

and assigned
distance as one
plus current
node distance

Path distance at current node was already
assigned in previous iteration

Vi sit_queue

DEclB

current _node

Repeat for
next node in
the queve

Vi sit_queue

DEclB

All neighbors

of current node
are “queuved”

current _node

and assigned
distance as one
plus current
node distance

Repeat for
next node in —
the queve

Vi sit_queue

DEclB

All neighbors

of current node
are “queuved”

current _node

and assigned
distance as one
plus current
node distance

Do noft revisit or re-enqueue nodes

Repeat for
next node In I

Ed Vi sit_queue

the queue B
o

DEclB

All neighbors

of current node
are “queuved”

current _node

and assigned
distance as one
plus current
node distance

Repeat for
next node In o

the queve

vi sit_queue

BRHAEA

O [

ON=m
(vy)

All neighbors
of current node Enqueue

are “queuved”
current _node

and assigned
distance as one

plus current
node distance

Repeat for
next node in
the queve

Vi sit_queue

AEERNAEA

All neighbors

Enqueue

of current node
are “queuved”

current _node

and assigned
distance as one
plus current
node distance

Repeat for
next node in
the queve

All neighbors
of current node
are “queuved”

and assigned
distance as one
plus current
node distance

Vi sit_queue

BEEENAEA

Enqueue

current _node

Repeat for
next node in
the queve

All neighbors
of current node
are “queuved”

and assigned
distance as one
plus current
node distance

Vi sit_queue

BEEENAEA

current _node

Node
done being
processed

Repeat for
next node in
the queue

All neighbors
of current node
are “queuved”

and assigned
distance as one
plus current
node distance

Vi sit_queue

BEEENAEA

current _node

- |Continue until goal reached or queue is empty

Repeat for |
next node in | =
the queve |

Vi sit _queue

BEEEA

All neighbors

Dequeue

of current node |
are “queuved” |

current _node

and assigned |
distance as one|
plus current |
node distance |

How to keep track of visited nodes? Queve data structure

Begi? from start node with no parent and zero distance

3 Visit+the neighbors of nodes just visited <

Assign each one plus the smallest distance

l » Repeat for next set of neighbors

Once+goal node reached, perform local search back to start

Assign parents along path in decreasing order

v L .
Form list of navigation waypoints

[] Global search to find routing /\

perform local search back to start

Assign parents along path in decreasing order

v o .
Form list of navigation waypoints

[] Global search to find routing ,—\}

Is this local search necessary?

Brushfire is one of several algorithms that perform a “floodfill”

Begi? from start node with no parent and zero distance

Visit the neighbors of nodes just visited <
\

Assign each one plus the smallest distance

1 » Repeat for next set of neighbors
Once+goal node reached, perform local search back to start
Assign parents along path in decreasing order

v L .
Form list of navigation waypoints

Breadth-first Search

For Breadth-first Search, each cell needs to keep
track of whether it has been visited and queuved

origin_x: 2.2

oTeTere e
oo origin_y: 0.3
iiii occupi ed: false
St St e St et sttt s R Tz axans parent: ??
+9 999909994 R Tz axans S
$9- 999909094 R Tz axans di st ance: ??
+o R aLanaxand e
-rijir :tz:itzz visited: false
papSpaRs oo ee queued: false
R atazana R aRaxaxnand
R atazana R aRanaxand
gaani: jaaaes A graph nod
EnEnEE iR R R grapn noee
L Sl AL ah SN AL AL AL AL AL AN N SRAN SR AR ILE stores a struct of
b L ah S ah SR Sh AL SR AL AL AR R a0 SR A0 IR A0S . .
sl aieiaradbdneienabdnd information about

the cell

Initialize : Breadth-first Search

All nodes to have no parent, max distance, and as unvisited

Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element
Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited
For each neighbor :
Add to visit queue, if not previously visited or queued
If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...
distance to be distance of current node + cost to move

Initialize : Breadth-first Search

All nodes to have no parent, max distance, and as unvisited
Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element

Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited

For each neighbor :
Add to visit queue, if not previously visited or queued

If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...

distance to be distance of current node + cost to move

Initialize :
All nodes to have no parent, max distance, and as unvisited
Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element

Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited

For each neighbor :
Add to visit queue, iIf not previously visited or queued

If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...

distance to be distance of current node + cost to move

All nodes to have no parent, max distance, and as unvisited

E is some very large number

All nodes to have no parent, max distance, and as unvisited

B is some very large number

Start node to have no parent and zero distance

Visit queue with start node as its only enqueued element

Vi sit_queue

Initialize :
All nodes to have no parent, max distance, and as unvisited
Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element

Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited

For each neighbor :
Add to visit queue, if not previously visited or queued

If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...

distance to be distance of current node + cost to move

Dequeue new current node to visit and mark it as visited

Vi sit_queue

Dequeue new current node to visit and mark it as visited

Bl Tl Sl St Sl Sl S vi sit_queue
Sl S S Sl S El S S current node

Initialize :
All nodes to have no parent, max distance, and as unvisited
Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element

Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited

For each neighbor :
Add to visit queue, if not previously visited or queued

If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...

distance to be distance of current node + cost to move

Add to visit queue, if not previously visited or queued

- === Sl St e Sl e e Vi sit_queue
St Sl Sl S El S S current node

Add to visit queue, if not previously visited or queued

Quevue first

Vi sit_queue

neighbor

current _node

Add to visit queue, if not previously visited or queued

Queve first o
vi sit_queue

neighbor

A

current _node

Initialize :
All nodes to have no parent, max distance, and as unvisited
Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element

Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited

For each neighbor :
Add to visit queue, iIf not previously visited or queued

If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...

distance to be distance of current node + cost to move

If Distance of neighbor > Distance of current node + ...
= = Cost to move from current node to neighbor

o &
R
RS R Vi si t_queue
RS EE S n
AENEEE - EEEEEE o
e e 5 ey ey Y P B R current _node

Vi sit_queue

current _node

Then Update neighbor’s parent to be current node and ...

___-__
SEEE BEEEBEE vi si t_queue
SEEE BEEEBEE n
AREEE = EEEEEE]
S = == == W === = current _node

update neighbor’s distance to be distance of current node + cost to move

___-__
SEEE BEEEBEE vi si t_queue
SEEE BEEEBEE n
AREEE = EEEEEE]
S = == == W === = current _node

update neighbor’s distance to be distance of current node + cost to move

___-__
SEEE BEEEBEE vi si t_queue
SEEE BEEEBEE n
AREEE = EEEEEE]
S = == == W === = current _node

update neighbor’s distance to be distance of current node + cost to move
Kl

___-__
SEEE BEEEBEE vi si t_queue
SEEE BEEEBEE n
AREEE = EEEEEE]
S = == == W === = current _node

update neighbor’s distance to be distance of current node + cost to move

___-__
SEEE BEEEBEE vi si t_queue
SEEE BEEEBEE n
AREEE = EEEEEE]
S = == == W === = current _node

Initialize :
All nodes to have no parent, max distance, and as unvisited
Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element

Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited

For each neighbor :
Add to visit queue, if not previously visited or queued

If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...

distance to be distance of current node + cost to move

Vi sit_queue

current _node

Quevue second

Vi sit_queue

neighbor

current _node

Quevue second

Vi sit_queue

neighbor -

current _node

Assign
distance and

Vi sit_queue

BEA

parent

current _node

Queuvue third

Vi sit_queue

neighbor -

current _node

Queuvue third

Vi sit_queue

neighbor -

current _node

Assign
distance and

Vi sit_queue

cHBRAl

parent

current _node

Queve last

Vi sit_queue

neighbor -

current _node

Queve last

Vi sit_queue

neighbor _

current _node

Assign
distance and

Vi sit_queue

DEcEBNA

parent

current _node

Vi sit_queue

DEcEBNA

current _node

Current node
fully processed

___-__
S S _____:: Vi sit_queue
ERDERDRTE [P N . - DEcEslA
S R . - ___::: current node

Vi sit_queue

DlclB

current _node

Dequeue from
visit queue

Process
current node

Vi sit_queue

DlclB

current _node

Dequeue from
visit queue

Process
current node

Vi sit_queue

Queuve first olcls

neighbor

current _node

Process
current node

Vi sit_queue

Queuve first Efolcls

neighbor

current _node

Process
current node

Vi sit_queue

Queve first Efolcls

neighbor

current _node

Assign
distance and
parent

Process iy iy iy oy
current node T ———— A
T B e o o e o visit_gueue
Queve second """ mm W Efolcls
neighbor ey PP g P D i
e = = =] = e = = =] —
Ry e i current_node

Process
current node

Vi sit_queue

Quevue second Efofcls]

neighbor

current _node

Process
current node

Vi sit_queue

Quevue second Efofcls]

neighbor

current _node

Assign
distance and
parent

Process
current node

Vi sit_queue

FRERDNCHEB

Do not queue

third neighbor

(already
visited)

current _node

Process iy g iy iy g
current node T ———— A
‘:f::::::::: iy iy iy i i iy i vi si t_queue
Queve last iy D e e GENGDEN D iy e e e b FRelolchs)
neighbor ey PP g P D i
—_—_ = = = = —__— = = = =
pny ey py e ey iy i iy iy P ey iy iy i iy i current_node

Process
current node

Queve last
neighbor

Vi sit_queue

BEEEREA

current _node

Process
current node

Vi sit_queue

Quevue last Efofcls

neighbor

current _node

Assign
distance and
parent

Vi sit_queue

BEEEREA

current _node

Current node
fully processed

___-__
il Sl Bl M ““::: Vi sit_queue
ERDERDRTE [P N . - AEEBDRAARA
il Ml Sl el B __‘::: current node

Vi sit_queue

ciFRefDlC

current _node

Dequeue from

visit queue ...
process

confinues

Aw

Click within the white grid and drag your mouse to draw obstacles.
Drag the node to set the start position. ! | | ! ! ! ! !
Drag the red node to set the end position. https://giao.github.io/PathFinding.js/visual/ Heuristic
Choose an algorithm from the right-hand panel. t 1 t t t 1 1 1 O Manh:
Click Start Search in the lower-right corner to start the animation. ® Euciic

@ Octile

@ Cheb
Options

B Allow

B Don't ¢

" generating grid 100%

Project Hosted on Github

Instructions T 1 | [| 1 1 1 R Sclect Algorithm

Click within the white grid and drag your mouse to draw obstacles. 1 T 1 = — 1 | — 1 T 1 - A*

Drag the node to set the start position. S (S S N S S S ! — J

Drag the red node to set the end position. Heuristic
Choose an algorithm from the right-hand panel. et o g | P e s e e o P e) e e e { © Manhattan
Click Start Search in the lower-right corner to start the animation. I A I A I O I | | [® Euclidean

® Octile

@ Chebyshev
Options

B Allow Diagonal

B Bi-directional

B Don't Cross Corners

EIl Weight

IDA*
Breadth-First-Search
Best-First-Search
Dijkstra

Jump Point Search
Orthogonal Jump Point
Search

Trace

Start Pause Clear
Search Search Walls

1™ generating grid 100%

Project Hosted on Github

Instructions

Click within the white grid and drag your mouse to draw obstacles.
Drag the node to set the start position.

Drag the red node to set the end position.

Choose an algorithm from the right-hand panel.

Click Start Search in the lower-right corner to start the animation.

length: 38
time: 1 .5000ms
operations: 568

Project Hosted on Github

Select Algorithm
A*
IDA*
Breadth-First-Search
Options
B Allow Diagonal

B Bi-directional
B Don't Cross Comers

Best-First-Search
Dijkstra

Jump Point Search
Orthogonal Jump Point
Search

Trace

Considerations for BFS

Is any path that reaches the goal a good path?

How many cells do we need to visit?

Could we use another visit strategy?

Instructions

Click within the white grid and drag your mouse to draw obstacles.
Drag the node to set the start position.

Drag the red node to set the end position.

Choose an algorithm from the right-hand panel.

Click Start Search in the lower-right corner to start the animation.

length: 38
time: 1 .5000ms
operations: 568

Project Hosted on Github

Select Algorithm
A*
IDA*
Breadth-First-Search
Options
B Allow Diagonal

B Bi-directional
B Don't Cross Comers

Best-First-Search
Dijkstra

Jump Point Search
Orthogonal Jump Point
Search

Trace

Instructions ' ' Select Algorithm

Click within the white grid and drag your mouse to draw obstacles. 1 1 =il (T | . A*

Drag the node to set the start position. | |

Drag the red node to set the end position. Heuristic
Choose an algorithm from the right-hand panel. O Manhattan
Click Start Search in the lower-right corner to start the animation. @ Euciidean

® Octile

® Chebyshev
Options

B Allow Diagonal

B Bi-directional

B Don't Cross Comners

u Weight

IDA*
Breadth-First-Search
Best-First-Search
Dijkstra

Jump Point Search

Orthogonal Jump Point
Search
Trace

length: 38
time: 2.5000ms
operations: 309

Project Hosted on Github

Instructions Select Algorithm

Click within the white grid and drag your mouse to draw obstacles. | Y\
Drag the node to set the start position.
Drag the red node to set the end position.
Choose an algorithm from the right-hand panel. O Manhattan
Click Start Search in the lower-right comer to start the animation. P
uclidean
@ Octile
® Chebyshev
Options
B Allow Diagonal
B Bi-directional
B Don't Cross Comners

u Weight

Heuristic

IDA*
Breadth-First-Search
Best-First-Search
Dijkstra

Jump Point Search
Orthogonal Jump Point
Search

Trace

Clear Clear
Path Walls

length: 38

How does A-Star generate a shortest path
gl while visiting fewer nodes ?

Initialize : Breadth-first Search

All nodes to have no parent, max distance, and as unvisited

Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element
Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited
For each neighbor :
Add to visit queue, if not previously visited or queued
If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...
distance to be distance of current node + cost to move

Initialize : A-Star Search

All nodes to have no parent, max distance, and as unvisited

Start node to have no parent and zero distance
Visit queue with start node as its only enqueued element
Iterate : While visit list not empty and currently visited node is not the goal
Dequeue new current node to visit and mark it as visited
For each neighbor :

Add to visitipriority queuej if not previously visited or queued

If Distance of neighbor > Distance of current node + ...
Cost to move from current node to neighbor
Then Update neighbor’s parent to be current node and ...
distance to be distance of current node + cost to move

A-Star Search

Add to visitipriority queuej if not previously visited or queued

How do we implement a priority queue?

What is a node’s priority for A-Star?

How do we implement a priority queue?

Topic for later courses in data structures (e.g., Michigan EECS 280)
Foreshadowing: use a binary heap

Considered an advanced extension for Project 3

What is a node’s priority for A-Star?

How do we implement a priority queue?

Topic for later courses in data structures (e.g., Michigan EECS 280)
Foreshadowing: use a binary heap

Considered an advanced extension for Project 3

What is a node’s priority for A-Star?

Use an optimistic heuristic for the best possible outcome

Each node’s priority is distance along path route to start +

best possible distance to goal

Each node’s priority is distance along path route to start +
best possible distance to goal

EECE

Each node’s priority is distance along path route to start +

best possible distance to goal

5] 1 e O I

~ Consider the node
~ at this location

Each node’s priority is distance along path route to start +

best possible distance to goal

Store node
priority in
cell struct

origin x: 2.2
origin.y: 0.3
occupi ed: false
parent: ?2?

di stance: ??
priority: ??
visited: false
queued: fal se

~~ Consider the node
at this location

Each node’s priority is distance along path route to start +

best possible distance to goal

Store node
priority in
cell struct

origin x: 2.2
origin.y: 0.3
occupi ed: false
parent: ?2?

di stance: ??
priority:
visited: false
queued: fal se

Consider the node

at this location

Each node’s priority is distance along path route to start +
best possible distance to goal

origin x: 2.2
origin.y: 0.3
occupi ed: false
parent: ?2?

di stance: ??
priority:
visited: false
queued: fal se

~~ Consider the node
at this location

Each node’s priority is distance along path route to start +
best possible distance to goal

| Node being
o origin x: 2.2
queved will (" " giny 0.3

| 'have a roufe| occupied: false
parent: <nbrnode>

fo start di st ance:

priority:

] visited: false
..... | e queued: fal se

~~ Consider the node
at this location

Each node’s priority is distance along path route to start +
best possible distance to goal

| Node being
N N . origin x: 2.2
i queued will origin_y: 0.3

'have a roufe| occupied: false
parent: <nbrnode>

| T fo start di st ance:
Tl priority:

visited: false
queued: fal se

N
[

H_EEN
g_score is node’s current gs
value of . di st ance

~~ Consider the node
at this location

Each node’s priority is distance along path route to start +

best possible distance to goal

i Bh scoreis lowest
DEREREEREEN BN = m=m[)0SSible distance to goal
= EEE i (regardless of collisions)
g_score is node’s current gs
value of . di st ance

~~ Consider the node
at this location

.priority . di stance

f_scoreliiElllo_scoreliilin_score

Bh scoreis lowest

11 = mw(00SSiDle distance to goal
BN BiimaEEE B(regardless of collisions)
g_score is node’s current msii | |
value of . di st ance

~~ Consider the node
-~ at this location

.priority . di stance

f_scoreliiElllo_scoreliilin_score

Bh scoreis lowest
mpOssible distance to goal
(regardless of collisions)

g_score is node’s current msi}
value of . di st ance

- Consider the node
-~ at this location

.priority . di stance

f ScCorcE=EEN (0 Scorciedlh score

Bh scoreis lowest
mpOssible distance to goal
(regardless of collisions)

g_score is node’s current miim
value of . di st ance

- Consider the node
-~ at this location

.priority . di stance

f ScCorcE=EEN (0 Scorciedlh score

Bh scoreis lowest
mpOssible distance to goal
(regardless of collisions)

H_1IIN
g_score is node’s current i\
value of . di st ance

EEE

Consider the node
at this location

What options do we have
for navigating our robot?

Robot that plans paths

using global search ?

Search over all possible paths

What options do we have
for navigating our robot?

Search over all possible paths

What options do we have
;—:4 for navigating our robot?

+ Complete algorithm '

(guarantees correct answer)

+ Optimal path

- Expensive
- Responsiveness

Search over all possible paths

What options do we have
for navigating our robot?

Just move randomly
Follow wall to goal
Build a map to guide us

Search over all possible paths

What options do we have
;—:J for navigating our robot?
Random Walk
Bug Algorithm
Local Search

Global Search

Deliberation

-——eeeeeooo— o
Random Walk

Bug Algorithm
Local Search

Global Search

Deliberation

R ———————————————————————————————
Random Walk

Bug Algorithm

Local Search

Global Search

Deliberation

R ———————————————————————————————
Random Walk

+ Cheap

+ Simple
+ Robust -
* Sow Bug Algorithm
+ Simple
+ Reliable
— Known goal location
- Forgetful L I S h + Complete
g9 Oca earc + Optimal
+ Adap_table - Expensive
- Requires SLAM - Responsive
- Gets stuck

Global Search

Deliberation

e ——————————

Reaction

Overhead vs. Optimality

Inexpensive Complete

Speed vs. Guarantees

Simple - Thorough

Dynamic Responsiveness to environment A daptable

There is no one right algorithm.

There is a larger world of possibilities.

e ———————————————

- Overhead vs. Optimali
Inexpensive — ——C TP Complete
- Speed vs. Guar
Simple - pee e e — Thorough
DynamiC Responsiveness to environment A daptable

Reaction Deliberation

http://wiki.ros.org/navigation/Tutorials/RobotSetup

see
: : : R O S .o rq About | Support | Discussion Forum | Service Status | Q&A answers.ros.org Search:[H Submit l

Documentation Browse Software NEES Download

navigation/ Tutorials/ RobotSetup

"move_base_simple/goal" . .
geometry_msgs/PoseStamped N aVlgatlon Stack Setu 0
1
move_base l -
Y - nav_msgs/GetMap map_server

global_planner <—— global_costmap

" R B £ T sensor topics

tf/tfMessage nav_msgs/Path | (recovery_behaviors) sensor_msgs/LaserScan H

sensor_msgs/PointCloud
Y \ .

odometry source | odom > local_planner <— local_costmap
nav_msgs/Odometry - -

amcl —

S

sensor transforms Ssensor sources

"cmd_vel"|geometry_msgs/Twist
Y provided node

optional provided node
platform specific node

’ base controller ‘

Navigation in Robot Operating Systems

101 or Lin. Alg.

»4\ \\ r.

Choose 3

310 | [a11 {3
m., oy e AN

Technical Electives
(20 credits, 8 from Robotics)

e

Capstone
(TechComm 449 and
ROB 450, 7 credits)

ME 240

or

102 or Eng 101 103 or Eng 100
|
|
P < VUK
Disciplinary Breadth (4 courses)
EECS 280 ; BME 211
— — ; or
EECS301 | EECS215
or ’ or
IOE 265 EECS 270

|
| ME360
|
!

Disciplinary Depth
(1 course)

e Planned for Fall 2022, pending approva

Michigan Robotics Major Degree Graph

101 or Lin. Alg.

102 or Eng 101

103 or Eng 100

311 i

|310i

320

rating

Technical Electives

(20 credits, 8 from Robotics)

X | or
EECS 301 I EECS 215 |

or
ME 360

s

Disciplinary Depth

Capstone
(TechComm 449 and
ROB 450, 7 credits)

‘ (1 course)

Planned for Fall 2022, pending approva

Michigan Robotics Major Degree Graph

Autonomous Navigation:
Global Searc

B o V-

-—-’\b—ﬁ

Roboﬁcs102

Introduction to Al and Programming
University of Michigan and Berea College
Fall 2021

https://app.emaze.com/@AIRRTROT/idea-2-the-robot-maze#1

