Machine Learning:
Nearest Neighbors

ROB 102: Introduction to Al & Programming

Lecture 11
2021/11/22



Last time...

Image classification is a type of supervised learning where we predict

the class of an image using labelled data.
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https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png

Last time...

Machine Learning Algorithm:
Training time:

Learn a prediction model by optimizing over a labelled dataset.
Testing time:

Use the model to perform prediction on new data.

Data Split:
Training set: Labelled data used for training a machine learning algorithm.

Test set: Data used to test the accuracy of the machine learning algorithm.



Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier
3. Neural Network



The assignment instructions are available!
https://robotics102.github.io/projects/a4
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Project 4: Machine Learning for Image

Classification

Due December 10th, 2021 at 11:59 PM.

In this project, we will use machine learning algorithms to perform image classification. Image
classification is the task of predicting the class, or label, of an image out of a set of known images.
This is a type of supervised learning, which refers to algorithms that learn a function from labelled
datasets.

We will be writing algorithms to do image classification on the MNIST dataset. MNIST consists of tiny

2828 pixel images of handwritten digits from 0 to 9. A few example images from each are shown
below.
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https://robotics102.github.io/projects/a4

The template code is available! Use the Github Classroom link to join.

‘ ’ Search or jump to...

Pull requests Issues Marketplace Explore

8 robotics102 / machine-learning  Private template ©Unwatch ~ 4 Y7 Star | 0 0
{> Code Issues Pull requests Actions Projects Security Insights Settings
¥ main ~ ¥ 1branch  0tags Go to file Add file ~ Code ~ About @
Template code for ROB 102 Project
@ janapavlasek Add the project page link to the readme ceédsedl 3 days ago YY) 6 commits 4: Machine Learning.
gitignore Initialize template files 18 days ago M Readme
README.md Add the project page link to the readme 3 days ago
linear_classifieripynb Add tests and documentation 3 days ago Releases
t neighbors.i b Add tests a \tati 3 dav Mo releases published
nearest_neighbors.ipyn Add tests and documentation ays ago Create 2 new release
two_layer_neural_netipynb Add tests and documentation 3 days ago
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Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors (Today!)
2. Linear Classifier
3. Neural Network



Image Classification on MNIST

Imagine we have 60k labelled images. How can we predict the
class of a new image?

A — ?



Image Classification on MINIST

Imagine we have 60k labelled images. How can we predict the
class of a new image?

A — ?

Idea: This image of a two might be numerically close to other
images of twos.



Nearest Neighbors

Idea: Given a new image, find the closest image in the training
set. Then, assign the same label to the new image.

Test images Eﬂ

Nearest tirriigégi n



Nearest Neighbors: Project 4.1

In Project 4 (Part 1), you will implement an algorithm to
classify images using Nearest Neighbors.

num_viz = 1

. Jupyter nearest_neighbors Last Checkpoint: 5 hours ago  (autosaved) ide = shuffle(1:N_test)[1:num_viz]

nearest = x_train[indices[idx], =, :]

File Edit View Insert Cell Kerne Help imgs = [x_test[idx, :, :]; nearast]
# imgs = reshape(imgs’, width, height, num viz * 2)
= + SR + ¥+ PRun B C W  Code w imgs = MNIST.convertZimage(permutedims(imgs, (2, 3, 1)))

for i in 1:num viz

img = idx[i]

@printf("Img %-2d -> Predicted: %-16s True: %s\n", i, y pred[img], y_test[img])
end
println{"\nTop row = test image, bottom row = nearest neighbor.™)
mosaicview(imgs, fillvalue=1, nrow=2, npad=3, rowmajor=true)

Part I: Nearest Neighbors

This notebook implements a nearest neighbars classifier.

Img 1 -»> Predicted: 8 Trus: 3
Img 2 -»> Predicted: 8 True: B
Img 2 -» Predicted: 4 Trus: 4
Impnrts I|‘1§ 4 -» Predicted: @ True: @
Img 5 - Predicted: 8 True: 8
Some imports we'll need. Img € -> Predicted: 9 True: 9
Img 7 -»> Predicted: 4 Trus: 4
Img 8 -»> Predicted: 2 True: B
In [2]: using MLDatasets Img @ -» Predicted: 1 True: 1
using Plots Img 1@ -> Predicted: 3 True: 3
using Images
Top row = test image, bottom row = nearest neighbor.

using MosaicViews
using LinearAlgebra
using Random

using Printf
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Nearest Neighbors

Idea: Given a new image, find the closest image in the training
set. Then, assign the same label to the new image.

What does “nearest” mean?

distance( A, )



Fuclidean Distance

Recall: The Pythagorean Theorem gives us the distance:

In 2D:

{2

d(p,q) = /(g1 — P1)? + (g2 — P2)?

Q-m \

o q1

12

distance

13



Fuclidean Distance

Recall: The Pythagorean Theorem gives us the distance:

In 3D:

d(,q) = /(g1 — p1)? + (g2 — P2)? + (g5 — P3)?

|

distance

14



Fuclidean Distance

Recall: The Pythagorean Theorem gives us the distance:
In 3D:

d(p,q) = (q1 — p1)? + (q2 — P2)? + (g5 — P3)?
In N-D:
N
d(p,q) = E(Qi —pi)?
=1

T \

distance = \/(Ch —p1)? + (g —p2)? + -+ (qy — Pn)?

15



Euclidean Distance: Example

Image A
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Euclidean Distance: Example

Image A

1120

Image B
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Euclidean Distance: Example

Image A
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Image B
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Euclidean Distance: Example

Image A

-112 0

Image B
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1+0+0+4+1+1+1+0+1=9 ) distance(A, B) =\/§= 3
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Images as Matrices

If we have many images, we will stack them up in a vector of
matrices, or a 3D matrix of size NxXWxH.

In Project 4, the data will be stored in matrices like these. This is a convenient representation, but
we also like big matrices because computers are very good at dealing with them.

20



Nearest Neighbors

Back to the nearest neighbors algorithm. Say we have a matrix of N
training images and a test image we want to classify.

Xtest

> N

> N

J _

Ytrain




Nearest Neighbors

Back to the nearest neighbors algorithm. Say we have a matrix of N

training images and a test image we want to classify.

@ (Xeose X0) N

r
=== Ill_ll
HEEE "Naas

Xtest ‘N

X train

PN ey

train

d (Xpese, X2

train

3
d Xtest» Xt(:rgu'n)

) “Ctrain

distances

J
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Nearest Neighbors

The smallest distance to the test image is given by:

minimum (distances)

Let’s say the test image is closest to train image
x Then:

train’
argmin (distances) =7

The function argmin gives the argument that
minimizes distances. So, we can predict:

Ypred = Ytrain [7]

distances




Nearest Neighbors

A small example:

] e
Ytrain E Xtrain Illlr...
2 ||Illl
B HEE
HEE
Ypred KXtest ...
HHR

Goal: Predict test
image label, y,req

24



Nearest Neighbors

A small example:
— — distances
=T

Ytrain H Xtrain I II... :
2 ||Illl '
B e —

HEE
Ypred KXtest ...
HEE

5
d (Xeese X o

train

25



Nearest Neighbors

A small example:

I— distances
8 e
II... d(xtest gzun) 1.2

Ytrain E Xtrain II
B L —

n) 0.7 . minimum!
)
d Xtest grzun) =13 l

argmin (distances) =

Ypred Xtest ...
HEE

26



Nearest Neighbors

A small example:

distances
Ytrain
Nearest —
neighbor minimum!
&)
Ypred I

argmin (distances) = 4

27



Nearest Neighbors

A small example:
distances

Ytrain

minimum!

X®

train

y pred

argmin (distances) = 4

28



Nearest Neighbors: Algorithm

Training time:
Save the data, (X;rgqin, Virain)-

Testing time: Given N test images and N,.4;, training images:

o~ for 1 = 1:Nppsr do:

For each distances = [0,..,0] (vector of length N¢,qin)
test image for 3 = 1:Nggin do:
distances[J] = distance(X test[i], X train[]J])
nearest 1dx = argmin (distances)

y pred[i] = y train[nearest idx]

29



Nearest Neighbors: Algorithm

Training time:
Save the data, (X;rgqin, Virain)-

Testing time: Given N test images and N,.4;, training images:

for i = 1:Ngpg do

distances = [0,..,0] (vector of length N¢,gin) +—— Initialize distances
for 7 = 1:Nggin do: tozero

distances[J] = distance(X test[i], X train[]J])
nearest 1dx = argmin (distances)

y pred[i] = y train[nearest idx]

30



Nearest Neighbors: Algorithm

Training time:
Save the data, (X;rgqin, Virain)-

Testing time: Given N test images and N,.4;, training images:

for 1 = 1:Ngeg do:

Calculate distance distances = [0,..,0] (vector of length N¢,qin)

between current for 3 = 1:Ngqin do:

test image and distances[J] = distance(X test[i], X train[]J])
each train image nearest idx = argmin (distances)

y pred[i] = y train[nearest idx]

31



Nearest Neighbors: Algorithm

Training time:
Save the data, (X;rgqin, Virain)-

Testing time: Given N test images and N,.4;, training images:
for 1 = 1:Nppsr do:
distances = [0,..,0] (vector of length N¢yqin)
for 7 = 1:Nggin do:
distances[J] = distance(X test[i], X train[]J])
nearest 1dx = argmin(distances) <«—— Findthe index of the

y pred[i] = y train[nearest 1dx] nearest neighbor

32



Nearest Neighbors: Algorithm

Training time:
Save the data, (X;rgqin, Virain)-

Testing time: Given N test images and N,.4;, training images:
for i = 1:Ngpg do
distances = [0,..,0] (vector of length N¢,qin)
for 7 = 1:Nggin do:
distances[J] = distance(X test[i], X train[]J])
nearest 1dx = argmin (distances)
y pred[i] = y train[nearest 1dx] «—— Assignthe nearest

neighbor’s label to the

current test image
33



Exercise!

1|0 1 4|2 -1/0| 2 1,04
-1|10 01,0 2130 -2|11|0
-1/ 1 -3/1|0 31-1(1 3|-1(/3
Image A Image B Image C Test Image
label: 3 label: 1 label: 2
~~ —— — Exercise: Classify this image

Training data using nearest neighbors



Exercise: Solution TTola

210
3(-1/3
10 14| 2 1102 Test Image
-1, 0 0/1|0 2| 3
B R Sl distance(test, A) =v42 = 6.48
Image A Image B Image C distance(test, B) =+v73 = 8.54
label: 3 label: 1 label: 2
u W distance(test, C) =v16 = 4
—~—

Training data



Exercise: Solution TTola

2|11|0
3(-1/3
10 14| 2 1102 Test Image

distance(test, A) =v42 = 6.48
Image A Image B Image C distance(test, B) =+v73 = 8.54

label: 3 label: 1 label: 2
o W distance(test, C) =v16 = 4
—~—
Training data Nearest Neighbor: Image C

Predicted Label =2

36



How do we evaluate our model?

Accuracy: Percentage of correct classifications made by the model.

# correct predictions

Nitest v\
Total number of

data points tested

accuracy =

Quick, easy to interpret measure of how good the prediction is. Doesn’t
show why / how we’re failing.

37



cats not cats

Evaluation: Types of Error i N

a N 7 I

false negatives true negatives

Say we have a binary classification problem, e ° ° =
where a data point can be classified as one of
two options.

Ex: Cat detector (1 = cat, O = not cat)

Predicted as cats

38



Fvaluation: Types of Error e e

Say we have a binary classification problem,
where a data point can be classified as one of
two options.

Ex: Cat detector (1 = cat, O = not cat)

True positive: Cat correctly classified as cat.

False positive: Non-cat incorrectly classified as cat.

True negative: Non-cat correctly classified as not cat.

Predicted as cats

False negative: Cat incorrectly classified as not cat.

39



Evaluation: Precision & Recall

Precision: How valid the results are.

# true positives

recision = — -
P # true positives + # false positives

Recall: How complete the results are.

# true positives

recall =
# true positives + # false negatives

relevant elements

false negatives

celected elements

How many selected

: o i
items are relevant?

Precision =

true negatives

How many relevant

items are selected?

Recall = —

40



Evaluation: Precision & Recall

Precision: Helpful when it’s important to have

few false positives.

* Ex: A search engine should not show any irrelevant results,
but it’s okay to miss some relevant ones.

Recall: Helpful when it’s important to have few

false negatives.

e Ex: If a cancer detection algorithm gives a false negative,
that’s VERY bad! If there are some false positives, that’s not

so bad.

The metric chosen depends on the application!

relevant elements

false negatives

celected elements

How many selected

C
. . - . o . -
items are relevant?

Precision =

true negatives

How many relevant

items are selected?

Recall = —

41



Evaluation: Confusion Matrix

N4
’bQQJ ((\60\ <
> D S &
QX .O X 2 OQO PR
. : A N @ ¥ LT T
A heatmap of classification
airplane 0 0 O
labels vs true labels. _
automobile Y m 0O O
bird JKNEC 100 [V
For a perfect classifier, the Sl 0 0 0
confusion matrix looks like this. (@ 0 0 0 O
bl @ 0 0O 0 O
g} 0 O O O
js-@ 0 O O O
N M0 0 0 o©
g’ll@®@ 0 O O O



Evaluation: Confusion Matrix

True

label

A heatmap of classification |
labels vs true labels. a'rplaf‘e
automobile
bird
cat
deer
dog

frog
horse
ship

truck
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Evaluation: Confusion Matrix

True
label
A heatmap of classification

labels vs true labels.

airplane
automobile
bird

cat

# airplanes classified as airplanes
deer

dog
frog
horse
ship

4 33

truck
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Evaluation: Confusion Matrix

True
label
A heatmap of classification

labels vs true labels.

airplane
automobile
bird

cat

# airplanes classified as airplanes
deer

# airplanes classified as automobiles dog
frog
horse

ship

truck

45



Evaluation: Confusion Matrix

True
. _ label
A heatmap of classification -
dalrplane
labels vs true labels. o
automobile
bird
# airplanes classified as airplanes cat
deer
# airplanes classified as automobiles dog
# airplanes classified as birds frog
horse
ship

truck

4 33
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Evaluation: Confusion Matrix

True
. _ label
A heatmap of classification -
dalrplane
labels vs true labels. o
automobile
bird
# airplanes classified as airplanes cat
deer
# airplanes classified as automobiles dog
# airplanes classified as birds frog
etc... horse

ship

truck

47



Evaluation: Confusion Matrix

True

label

A heatmap of classification |
labels vs true labels. airplane
automobile
bird
The confusion matrix gives us cat
more insight about where the deer
algorithm is failing. dog
frog
horse
ship

truck

48



Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

The confusion matrix gives us
more insight about where the
algorithm is failing.

Airplanes are being misclassified
as birds.

True
label

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

4 33
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Evaluation: Confusion Matrix

True

label

A heatmap of classification |
labels vs true labels. airplane
automobile
bird
The confusion matrix gives us cat
more insight about where the deer
algorithm is failing. dog
frog
horse
Deer are hard to classify. They are ship

being labelled as dogs and horses. truck

50



k-Nearest Neighbors

To make our algorithm more robust, we
can let the k nearest neighbors vote on
the label for the test image. This is the “k”
in k-nearest neighbors (kNN).

Up until now, we were describing 1-NN.

¢¢4

¢¢¢¢

ﬂllllllﬂll
9|C[5[/]19]3|3[4[3]4
g16[5]/{9]2|3]4]3[9
¢lol1[/]1a]2]3[q[3]1
71]8]/[5]2|3[4]8[9
dle[\[/14]2[3]4]2]9
Glel1]/{a]4|3[3]3[q
qlél6li]1]49|3[9[3]3
716011/{7]1213[913[9



k-Nearest Neighbors

The decision boundaries for our data change. We are overfitting less.

the data NN classifier 5-NN classifier
L S I ._ e _ -
:‘F":}:' e P ' a.‘ ® . '? i .. . = .‘;* 'i -
b « 4 “h ¢ et
a‘ @ . L] :au *;“
& o & & -
- .I. : w-ﬂﬂ. @ ™ ) 4
L3 ':'.:51 ™ t

Experiment with kNN here: http://vision.stanford.edu/teaching/cs231n-demos/knn/

52


http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

How do we pick k?

k is an example of a hyperparameter: a parameter we choose, which
isn’t learned.

Generally, we need to tune these parameters by trying different values
and selecting the best performing ones.



Overfitting

Overfitting happens when we fit a model that corresponds too closely
to our data. Overfitting impacts performance on new data.

15

Probably a bad
guess for this
data point

10}
The blue line is a perfect fit __
for the given data. 5

But it’s not a very good or
choice of model.

54


https://en.wikipedia.org/wiki/File:Overfitted_Data.png

Overfitting

Overfitting happens when we fit a model that corresponds too closely
to our data. Overfitting impacts performance on new data.

15

10

~ This linear fit is likely a
better choice.

A better

guess! Avoids overfitting.

55


https://en.wikipedia.org/wiki/File:Overfitted_Data.png

Overfitting

Overfitting happens when we fit a model that corresponds too closely
to our data. Overfitting impacts performance on new data.

. A classification example

Green line = overfitting

Black line = better!

56


https://en.wikipedia.org/wiki/File:Overfitting.svg
https://en.wikipedia.org/wiki/File:Overfitted_Data.png

Bias-Variance Tradeoff

Bias is error due to deviation from the
true value (underfitting).

Variance is error due to sensitivity to
variations in the data (overfitting).

When choosing hyperparameters, we
need to tradeoff between both.

High
Bias

Low
Bias

Low
Variance

B

High
Variance X
X
X X X
X

57



Setting Hyperparameters

Idea #1: Choose hyperparameters that
work best on the data

Bad idea ®

Your Dataset

We are minimizing the training error. This is basically just
“memorizing” the training data (overfitting!).

The training error should be low. Ex: For nearest neighbor, k=1 will give
zero training error. Training error should only be used as a sanity check.

58
Credit: Justin Johnson, EECS 498 F20 (link)


https://web.eecs.umich.edu/%7Ejustincj/teaching/eecs498/FA2020/

Setting Hyperparameters

Idea #1: Choose hyperparameters that

work best on the data Bad idea ©®
Your Dataset
Idea #2: Split data into train and test, choose Better idea ©
hyperparameters that work best on test data
train test

We are minimizing the testing error.

This is better, but we still don’t know how we’ll do on new data.

59
Credit: Justin Johnson, EECS 498 F20 (link)


https://web.eecs.umich.edu/%7Ejustincj/teaching/eecs498/FA2020/

Setting Hyperparameters

Idea #1: Choose hyperparameters that
work best on the data

Bad idea ®

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

Better idea ©

train test
Idea #3: Split data into train, val, and test; choose Good idea ©
hyperparameters on val and evaluate on test
train validation test

Credit: Justin Johnson, EECS 498 F20 (link)

60


https://web.eecs.umich.edu/%7Ejustincj/teaching/eecs498/FA2020/

Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each Best idea! ©
fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test

fold 1 fold 2 fold 3 fold 4 fold 5 test

fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

Credit: Justin Johnson, EECS 498 F20 (link)

61


https://web.eecs.umich.edu/%7Ejustincj/teaching/eecs498/FA2020/

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors (Today!)

v" How to find the distance between images
v The nearest neighbors algorithm

v’ Evaluating classification algorithms

v’ Setting hyperparameters

2. Linear Classifier  <— Nexttime!
3. Neural Network

62
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