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Project 4:Machine Learning

Implement three machine learning algorithms to classify images from 
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier (Today!)
3. Neural Network

2



Last time…

We saw the (k-)Nearest Neighbor algorithm.

We assumed an image is numerically close 
to other images in the same class.

At training time, we saved ALL our training 
data, and calculated distances at test time.

distance(      ,      )
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Summary: Nearest Neighbors

Pros:
+ Straight-forward to implement
+ No training necessary
+ “Pretty good” for many 

problems

Cons:
− Requires a lot of memory
− Expensive at test time
− Distance isn’t always a good 

indicator of class similarity
− We need many training 

examples to make a good 
classifier for high dimensions 
(like images!)
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Class Scores

What if we had a function that told us how “two-like” an image is?

The score should be HIGH the image is a two and LOW if the image is 
probably not a two.

Most modern machine learning algorithms do classification like this.

𝑓𝑓2 = score
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Class Scores

Now, we only need to learn the parameters of a function using our 
training data. We don’t need to save the training data anymore.

6Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf


Recall: Machine Learning Algorithm

Training time: 
Find a function 𝑓𝑓(𝑋𝑋) which does well at classifying training data.

Testing time: 
Use 𝑓𝑓(𝑋𝑋) to classify new data.
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Recall: Machine Learning Algorithm

Training time: 
Find a function 𝑓𝑓(𝑋𝑋) which does well at classifying labelled data.

Testing time: 
Use 𝑓𝑓(𝑋𝑋) to classify new data.

How do we choose what 𝑓𝑓(𝑋𝑋) should look like?

How do we learn 𝑓𝑓(𝑋𝑋)?
8



Recall: Machine Learning Algorithm

Training time: 
Find a function f(X) which does well at classifying labelled data.

Testing time: 
Use f(X) to classify new data.

How do we choose what 𝑓𝑓(𝑋𝑋) should look like?
 Next: Use a linear function
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Linear Classification

Let’s look at a 2-D example. We want to classify our points into two 
categories:

twos

not twos

10Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf


Linear Classification

We need a function, 𝑓𝑓(𝑋𝑋) which will help us find a label, 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , which 
is 1 if the image is of a two, and -1 if it is not a two.

11Example Credit: (link)

twos

not twos

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf


Linear Classification

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑓𝑓 𝑋𝑋 ≥ 0
−1 if 𝑓𝑓 𝑋𝑋 < 0
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twos

not twos

Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf


Linear Classification

What does this look like in code? Remember, our plan is to use a linear 
function. In 1-D, this looks like this:

𝑓𝑓 𝑥𝑥 = 𝑤𝑤𝑥𝑥 + 𝑏𝑏

𝑓𝑓 𝑥𝑥

𝑥𝑥
𝑏𝑏

twos

not twos
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Images as Vectors

We will rearrange our images into long vectors by flattening them. The 
vectors will have length W*H.
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row 1

row 2

row 3 row 1 row 3row 2

Image

For MNIST images, vectors will have length 28*28 = 784.

Input data “𝑋𝑋”



Linear Classification

For our image, with dimension D = 28*28:

𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷−1) 𝑥𝑥(𝐷𝐷)𝑋𝑋

𝑓𝑓 𝑋𝑋 = 𝑤𝑤(1)𝑥𝑥(1) + 𝑤𝑤(2)𝑥𝑥(2) + ⋯+ 𝑤𝑤(𝐷𝐷−1)𝑥𝑥 𝐷𝐷−1 + 𝑤𝑤(𝐷𝐷)𝑥𝑥 𝐷𝐷 + 𝑏𝑏

𝑤𝑤(1) 𝑤𝑤(2) ��� 𝑤𝑤(𝐷𝐷−1) 𝑤𝑤(𝐷𝐷)𝑊𝑊 𝑏𝑏𝑏𝑏

Input image

Parameters to learn
15



Dot Product

A convenient way of writing this is called the dot product of vectors:

𝑓𝑓 𝑋𝑋 = 𝑊𝑊 � 𝑋𝑋 + 𝑏𝑏

Dot product
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Dot Product

+
𝑋𝑋
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

𝑓𝑓 𝑋𝑋 =
𝑊𝑊

� 𝑏𝑏

𝑏𝑏

= 𝑤𝑤(1)𝑥𝑥(1) + 𝑤𝑤(2)𝑥𝑥(2) + ⋯+ 𝑤𝑤(𝐷𝐷)𝑥𝑥 𝐷𝐷 + 𝑏𝑏

Input image

Parameters to learn
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𝑤𝑤(1)

𝑤𝑤(2)

𝑤𝑤(𝐷𝐷)



Example: Dot Product

56 231

24 2

0.2

-0.5

0.1

2.0

1.1

𝑊𝑊 𝑏𝑏Image:

Parameters:

Pixel values
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Example: Dot Product

56 231

24 2

56

231

24

2

1.1+�

= 0.2 � 56 + -0.5 � 231 + 0.1 � 24 + 2.0 � 2 + 1.1

= -96.8

𝑋𝑋𝑊𝑊 𝑏𝑏
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0.2

-0.5

0.1

2.0



Linear separability

Let’s go back and take a look at our choice of model, 𝑓𝑓 𝑋𝑋 . What does 
it mean to use a linear model?

𝑓𝑓 𝑋𝑋 = 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏

20



Linear separability

If we can draw a straight line through our data, then we say it is linearly 
separable.

Linearly 
separable

Linearly 
separable

21Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf


Linear separability

If we can draw a straight line through our data, then we say it is linearly 
separable.

Linear classifier assumption: The data is linearly separable.

Linearly 
separable

Linearly 
separable

22Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf


Linear separability

The problem with assumptions…

“All models are wrong, but some models are useful.”

NOT linearly 
separable!!

NOT linearly 
separable!!

Translation: Let’s assume our linear model is “good enough”
23Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf


Multiple Classes

In MNIST we have 10 classes, 
so we learn 10 classifiers (10 
weight vectors).

Each classifier gives a score 
for a class. We predict that 
the image belongs to the class 
that gives it the highest score.

24

Classifier 
score

Pixel value

Decision Regions

“two” 
score

“three” 
score

“four” 
score



Multiple Classes

In MNIST we have 10 classes, 
so we learn 10 classifiers (10 
weight vectors).

Each classifier gives a score 
for a class. We predict that 
the image belongs to the class 
that gives it the highest score.
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Classifier 
score

Pixel value

Decision Regions

“two” 
score

“three” 
score

“four” 
score



Multiple Classes

If we have 𝐾𝐾 classes, we can find 𝐾𝐾 linear functions (𝐾𝐾 weight vectors 
and biases):

𝑓𝑓1 𝑋𝑋 = 𝑊𝑊1 ⋅ 𝑋𝑋 + 𝑏𝑏1
𝑓𝑓2 𝑋𝑋 = 𝑊𝑊2 ⋅ 𝑋𝑋 + 𝑏𝑏2

𝑓𝑓𝐾𝐾 𝑋𝑋 = 𝑊𝑊𝐾𝐾 ⋅ 𝑋𝑋 + 𝑏𝑏𝐾𝐾
⋅⋅⋅
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Linear Classifier Algorithm

Training: Find weights 𝑊𝑊 and 
bias 𝑏𝑏 that do well at classifying 
training data

Testing: For each class 𝑖𝑖, do:
𝑓𝑓𝑖𝑖 𝑋𝑋 = 𝑊𝑊𝑖𝑖 ⋅ 𝑋𝑋 + 𝑏𝑏𝑖𝑖

Assign label:
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = argmax

𝑖𝑖
𝑓𝑓𝑖𝑖(𝑋𝑋)

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
27Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf


Matrix Multiplication

For the multiple class case, we need to perform 𝐾𝐾 dot products 
between the weight vectors and images.

28

=

𝑓𝑓1(𝑋𝑋)

𝑓𝑓2(𝑋𝑋)

𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑊𝑊1 ⋅ 𝑋𝑋 + 𝑏𝑏1

𝑊𝑊2 ⋅ 𝑋𝑋 + 𝑏𝑏2

𝑊𝑊𝐾𝐾 ⋅ 𝑋𝑋 + 𝑏𝑏𝐾𝐾

Matrix multiplication allows us to do this operation in one step.



Matrix Multiplication

+𝑤𝑤1
1 𝑤𝑤1

2 ��� 𝑤𝑤1
𝐷𝐷

𝑋𝑋

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

= 𝑊𝑊1 × 𝑏𝑏1

𝑏𝑏2

𝑏𝑏𝐾𝐾

𝑏𝑏
𝑓𝑓1(𝑋𝑋)

𝑓𝑓2(𝑋𝑋)

𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑊𝑊2

𝑊𝑊𝐾𝐾

𝑤𝑤2
1 𝑤𝑤2

2 ��� 𝑤𝑤2
𝐷𝐷

𝑤𝑤𝐾𝐾
1 𝑤𝑤𝐾𝐾

2 ��� 𝑤𝑤𝐾𝐾
𝐷𝐷

⋅⋅⋅ Matrix 
multiplication

29

Matrix multiplication takes the dot product between each row of the first matrix 
with each column of the second matrix.



Example: Matrix Multiplication

56 231

24 2

0.2 -0.5 0.1 2.0

1.1

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

Image:
Parameters:

Pixel values

1.1 -0.7 0.6 -0.2𝑊𝑊𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

-0.2 0.0 0.4 1.3𝑊𝑊𝑝𝑝𝑑𝑑𝑑𝑑

0.9𝑏𝑏𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

-0.3𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑
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Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+×
𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑊𝑊𝑝𝑝𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝(𝑋𝑋)
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𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝(𝑋𝑋)

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+×

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋) = 0.2 � 56 + -0.5 � 231 + 0.1 � 24 + 2.0 � 2 + 1.1

= -96.8

𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑊𝑊𝑝𝑝𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑

-96.8

32



𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝(𝑋𝑋)

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+

𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑(𝑋𝑋) = -0.2 � 56 + 0.0 � 231 + 0.4 � 24 + 1.3 � 2 + -0.3

= 0.7

𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑊𝑊𝑝𝑝𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑

-96.8

0.7

33
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𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝(𝑋𝑋)

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+

𝑓𝑓𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝(𝑋𝑋) = 1.1 � 56 + -0.7 � 231 + 0.6 � 24 + -0.2 � 2 + 0.9

= -85.2

𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑊𝑊𝑝𝑝𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑

-96.8

0.7

-85.2

34

×



𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝(𝑋𝑋)

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+
𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑊𝑊𝑝𝑝𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑖𝑖𝑝𝑝𝑝𝑝

𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑

-96.8

0.7

-85.2

Prediction: Dog!

35
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Matrix Multiplication in Julia

36

The * operation between two 
matrices is a matrix multiplication 
in Julia.



Project 4: Matrix Multiplication

+
𝑋𝑋

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

= 𝑊𝑊1

×
𝑏𝑏

𝑊𝑊2 𝑊𝑊𝐾𝐾

⋅⋅⋅

Matrix 
multiplication

37

𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷)

𝑤𝑤2
1

𝑤𝑤2
2

𝑤𝑤2
𝐷𝐷

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

Note: This will give us the same answer, 𝑋𝑋 ⋅ 𝑊𝑊𝑖𝑖 with instead of 𝑊𝑊𝑖𝑖 ⋅ 𝑋𝑋. Project 4 
uses this representation (images stacked in rows).

𝑓𝑓1(𝑋𝑋) 𝑓𝑓2(𝑋𝑋) ��� 𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑏𝑏1 𝑏𝑏2 ��� 𝑏𝑏𝐾𝐾



Matrix Shapes

+
𝑋𝑋

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

= 𝑊𝑊1

×
𝑏𝑏

𝑊𝑊2 𝑊𝑊𝐾𝐾

⋅⋅⋅

38

𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷)

𝑤𝑤2
1

𝑤𝑤2
2

𝑤𝑤2
𝐷𝐷

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

𝑓𝑓1(𝑋𝑋) 𝑓𝑓2(𝑋𝑋) ��� 𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑏𝑏1 𝑏𝑏2 ��� 𝑏𝑏𝐾𝐾

We write matrix shape as: 
#rows x #columns

Or: (rows, columns)

1 x D D x K 1 x K

1 x K

Inner dimensions match!



Matrix Shapes

+𝑤𝑤1
1 𝑤𝑤1

2 ��� 𝑤𝑤1
𝐷𝐷

𝑋𝑋

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

= 𝑊𝑊1 × 𝑏𝑏1

𝑏𝑏2

𝑏𝑏𝐾𝐾

𝑏𝑏
𝑓𝑓1(𝑋𝑋)

𝑓𝑓2(𝑋𝑋)

𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑊𝑊2

𝑊𝑊𝐾𝐾

𝑤𝑤2
1 𝑤𝑤2

2 ��� 𝑤𝑤2
𝐷𝐷

𝑤𝑤𝐾𝐾
1 𝑤𝑤𝐾𝐾

2 ��� 𝑤𝑤𝐾𝐾
𝐷𝐷

⋅⋅⋅
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K x 1 K x D D x 1 K x 1

K x 1

Inner dimensions match!

We write matrix shape as: 
#rows x #columns

Or: (rows, columns)



Matrix Multiplication in Julia

40

Legal! 

The inner dimensions match:

(4, 3) x (3, 2) → (4, 2)



Matrix Multiplication in Julia

41

We get the same answer if we do dot products 
between the rows of A and the columns of B!

Dot product between 
row of A and column of B

Iterate through rows of A
Iterate through cols of B



Matrix Multiplication in Julia

42

Illegal 

The inner dimensions don’t match:

(4, 3) x (2, 3) → Fails!



One more trick…

43

+
𝑋𝑋

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

𝑊𝑊1

×
𝑏𝑏

𝑊𝑊2 𝑊𝑊𝐾𝐾

⋅⋅⋅𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷)

𝑤𝑤K
1

𝑤𝑤K
2

𝑤𝑤𝐾𝐾
𝐷𝐷

�𝑊𝑊

=𝑓𝑓1(𝑋𝑋) 𝑓𝑓2(𝑋𝑋) ��� 𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑏𝑏1 𝑏𝑏2 ��� 𝑏𝑏𝐾𝐾

𝑤𝑤2
1

𝑤𝑤2
2

𝑤𝑤2
𝐷𝐷



One more trick…
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𝑋𝑋

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

𝑊𝑊1

×

𝑏𝑏

𝑊𝑊2 𝑊𝑊𝐾𝐾

⋅⋅⋅𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷)

𝑤𝑤2
1

𝑤𝑤2
2

𝑤𝑤2
𝐷𝐷

𝑤𝑤K
1

𝑤𝑤𝐾𝐾
2

𝑤𝑤𝐾𝐾
𝐷𝐷

�𝑊𝑊

=𝑓𝑓1(𝑋𝑋) 𝑓𝑓2(𝑋𝑋) ��� 𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑏𝑏1 𝑏𝑏2 ��� 𝑏𝑏𝐾𝐾

𝑊𝑊

𝑓𝑓 𝑋𝑋 = 𝑋𝑋 × 𝑊𝑊
Now we only have one matrix 
to learn!

**but (D+1) x K parameters

1

Add a one



Images as Matrices

When we have multiple images, we will stack them up into a big matrix. 
For N images, the matrix will have size Nx(W*H).

46

image 1

image 2

image 3

image 4

image 6

image 5

N images

MNIST has 60,000 training images. The training image matrix will have size 60,000x784.

Exercise: Can you calculate 
the class scores for all the 
images using one matrix 
multiplication?



Training the model

How do we find 𝑾𝑾?

We will use optimization! 

𝑓𝑓 𝑋𝑋 = 𝑋𝑋 × 𝑾𝑾

47



Gradient Descent Optimization

An optimization algorithm helps 
us find the best local (lowest or 
highest) value of a function.

We will use an algorithm called 
gradient descent to find the 
weights.

First, we need something to 
optimize.

48

(Link to GIF)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


How can we train a linear classifier?

Which of these 
classifiers is better?

Recall: Overfitting
We would like our 
model to perform well 
on new data, even if 
that sacrifices 
performance on 
training data.
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How can we train a linear classifier?

Idea: We want to find a function which 
maximizes a margin.

This will make our algorithm more stable to 
perturbations in the input.

We might misclassify an example or two in our 
training set, but hopefully we’ll get a function 
which is better at classifying new images.

very small 
margin

50



Loss Function

A loss function tells us how good a model is at classifying an image.

The loss is LOW if we’re doing a good job at classifying, and HIGH if 
we’re doing a bad job.

Our goal is to find weights W that minimize the loss. This is called 
optimization. (More on that later).
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Support Vector Machine (SVM) Loss

Idea: The score for the correct class of an image should be higher than 
the other scores by some margin.

Aside: Why is it called “support vector machine”?

support 
vector

support 
vector
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SVM Loss

Goal: Images should be classified correctly by at least a margin Δ.

Say for some image 𝑋𝑋, its correct label is 𝑦𝑦 with score 𝑓𝑓𝑦𝑦 𝑋𝑋 . For all 
classes 𝑖𝑖 ≠ 𝑦𝑦, we want:

𝑓𝑓𝑦𝑦 𝑋𝑋 ≥ 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ

In other words, the score for some incorrect class, 𝑓𝑓𝑖𝑖 𝑋𝑋 is less than the 
correct class score by at least Δ.

Correct class 
score

Incorrect class score
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SVM Loss

If the margin condition is met, then we’re happy! We will set 𝐿𝐿𝑖𝑖 = 0. 
Otherwise, the loss will be the amount by which we are off:

𝐿𝐿𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦(𝑋𝑋)
The total loss is the sum of the losses for each class that is not correct:

𝐿𝐿 = �
∀𝑖𝑖 ∖𝑦𝑦

�𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

Note: ∀ 𝑖𝑖 ∖ 𝑦𝑦 means “for all values of 𝑖𝑖 except 𝑦𝑦 ”

Correct class 
score

Incorrect class score
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SVM Loss

If the margin condition is met, then we’re happy! We will set 𝐿𝐿𝑖𝑖 = 0. 
Otherwise, the loss will be the amount by which we are off:

𝐿𝐿𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦(𝑋𝑋)
The total loss is the sum of the losses for each class that is not correct:

𝐿𝐿 = �
∀𝑖𝑖 ∖𝑦𝑦

�𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

In English: For each incorrect class, add its loss to the total, if it wasn’t 
less than the correct class by the margin.

Correct class 
score

Incorrect class score

55



Example: SVM Loss

scores

Exercise: Find the SVM 
Loss for each image.

classes

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

56Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf


Example: SVM Loss

Exercise: Find the SVM 
Loss for each image.

𝐿𝐿𝑐𝑐𝑐𝑐𝑝𝑝 = 6.1 – 3.2 = 2.9

Δ = 1

5.1 + 1 = 6.1 > 3.2

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

car:

𝐿𝐿𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑 = 0

-1.7 + 1 = -0.7 < 3.2frog:

𝐿𝐿 = 2.9 + 0 = 2.92.9
57Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf


Example: SVM Loss

Exercise: Find the SVM 
Loss for each image.

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 0

Δ = 1

1.3 + 1 = 2.3 < 4.9

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

cat:

𝐿𝐿𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑 = 0

2.0 + 1 = 3.0 < 4.9frog:

𝐿𝐿 = 0 + 0 = 002.9
58Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf


Example: SVM Loss

Exercise: Find the SVM 
Loss for each image.

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 3.2 - -3.1 = 6.3

Δ = 1

2.2 + 1 = 3.2 > -3.1

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

cat:

𝐿𝐿𝑓𝑓𝑝𝑝𝑑𝑑𝑑𝑑 = 3.5 - -3.1 = 6.6

2.5 + 1 = 3.5 > -3.1car:

𝐿𝐿 = 6.3 + 6.6 = 12.912.92.9 0
59Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf


Example: SVM Loss

Exercise: Find the SVM 
Loss for each image.

Δ = 1

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

Total Loss:
= (2.9 + 0 + 12.9) / 3 
= 5.27

12.92.9 0
60Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf


How can we train a linear classifier?

Goal: Find a set of weights 𝑊𝑊 that minimizes the loss. 
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Setting the weights

Idea #1: Random Search
Until we’re happy with the performance, do:

1. Set weights randomly
2. Check how well the classifier does

𝑤𝑤1

𝑤𝑤2 Not great…

Red = Loss function is low
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Setting the weights

Idea #1: Random Search
Until we’re happy with the performance, do:

1. Set weights randomly
2. Check how well the classifier does

𝑤𝑤1

𝑤𝑤2

Better!

Red = Loss function is low
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Setting the weights

Idea #1: Random Search
Until we’re happy with the performance, do:

1. Set weights randomly
2. Check how well the classifier does

𝑤𝑤1

𝑤𝑤2

Worse… Throw this one out

Red = Loss function is low
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Setting the weights

Idea #1: Random Search
Until we’re happy with the performance, do:

1. Set weights randomly
2. Check how well the classifier does

𝑤𝑤1

𝑤𝑤2

Good!

Red = Loss function is low

Bad idea! We have 785x10 different numbers 
to find. This will take forever. 
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Setting the weights

Imagine you’re hiking 
(blindfolded!). You want to get 
to the lowest point of the hill.

Idea: 
1. Try to take a step. 
2. Stay there if you get lower 

than your current location.
3. Repeat! 
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Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Better

Red = Loss function is low
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Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Worse

Red = Loss function is low
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Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Better!

Red = Loss function is low
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Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Worse

Red = Loss function is low
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Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Better!

Red = Loss function is low
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Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Red = Loss function is lowBetter, but still not great. It will be hard to 
find the right direction to step. 
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Rate of Change

Can we do better?

Yes! With Calculus 

𝑦𝑦

𝑥𝑥
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Rate of Change

The slope at a point is given by:

This  is the rate of change of 𝑦𝑦. It tells 
us how 𝑦𝑦 changes if we change 𝑥𝑥 a 
little.

𝑦𝑦

𝑥𝑥Δ𝑥𝑥

Δ𝑦𝑦

slope = Δ𝑦𝑦
Δ𝑥𝑥
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Rate of Change

The slope at a point is given by:

Recall from calculus: 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= lim
Δ𝑥𝑥→0

Δ𝑦𝑦
Δ𝑥𝑥

𝑦𝑦

𝑥𝑥Δ𝑥𝑥

Δ𝑦𝑦

rate of change = Δ𝑦𝑦
Δ𝑥𝑥

gradient
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Gradient

Recall from calculus: 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= lim
Δ𝑥𝑥→0

Δ𝑦𝑦
Δ𝑥𝑥

In 2D, the gradient is the direction and rate of 
fastest increase.

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥2

gradients in 2D

partial derivatives 76



Gradient

Recall from calculus: 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= lim
Δ𝑥𝑥→0

Δ𝑦𝑦
Δ𝑥𝑥

In 2D, the gradient is the direction and rate of 
fastest increase.

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥2

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low

Idea: We can use the gradient 
of the loss function to figure 
out how to update our weights!

gradients in 2D
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Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the 
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low
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Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the 
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low
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Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the 
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low
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Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the 
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low
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Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the 
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low
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Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the 
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low
Better! And we can compute the gradients 
ahead of time because we know how to do 
the derivatives.
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Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W)

W = W – step_size * loss_grad
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Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W)

W = W – step_size * loss_grad

Initialize weights to small values 
drawn from a normal distribution
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Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W)

W = W – step_size * loss_grad

Initialize weights to small values 
drawn from a normal distribution

For a fixed number 
of iterations… 
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Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values 
drawn from a normal distribution

For a fixed number 
of iterations… 

Calculate the gradient 
of the loss w.r.t. W.

imagesloss function

87
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Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values 
drawn from a normal distribution

For a fixed number 
of iterations… 

imagesloss function

Update the weight in the opposite 
direction of the gradient Gradient is the direction of maximum 

increase, and we want the loss to decrease, 
so we use the negative of the gradient.

88

Calculate the gradient 
of the loss w.r.t. W.

labels



Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values 
drawn from a normal distribution

For a fixed number 
of iterations… 

imagesloss function

Update the weight in the opposite 
direction of the gradient

How do we calculate the gradient?

How do we pick the step size?
89

Calculate the gradient 
of the loss w.r.t. W.

labels



Computing the Gradient

We can take the gradient of the loss with respect to each weight:

The gradient of the loss with respect to the weights is a matrix with the 
same size as the weights (D x K).

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊

=

𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤1
(1) ⋯

𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤𝐾𝐾
(1)

⋮ ⋱ ⋮
𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤1
(𝐷𝐷) ⋯

𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤𝐾𝐾
(𝐷𝐷)
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Computing the Gradient

We can take the gradient of the loss with respect to each weight:

We know the loss function, so we can compute the gradient 
beforehand. You are given a function to compute the gradients in P4!

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊

=

𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤1
(1) ⋯

𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤𝐾𝐾
(1)

⋮ ⋱ ⋮
𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤1
(𝐷𝐷) ⋯

𝜕𝜕𝐿𝐿

𝜕𝜕𝑤𝑤𝐾𝐾
(𝐷𝐷)
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Computing the Gradient

You are given a function to compute the gradients in P4!

If you want to derive them, check out the notes for Stanford course 
CS231n. (link)
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https://cs231n.github.io/optimization-1/


Computing the Gradient in Julia

The provided gradient function is called in the function that computes 
the loss

93

This function computes gradients



Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values 
drawn from a normal distribution

For a fixed number 
of iterations… 

imagesloss function

Update the weight in the opposite 
direction of the gradient

How do we calculate the gradient?

How do we pick the step size?
94

Calculate the gradient 
of the loss w.r.t. W.

labels



Learning Rate

The step size, which tells us how big of a step to take along the 
gradient, is called the learning rate.
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𝑤𝑤1

𝑤𝑤2

If we take a huge step, we might overshoot, 
and get farther away from the minimum.



Learning Rate

The step size, which tells us how big of a step to take along the 
gradient, is called the learning rate.

96

𝑤𝑤1

𝑤𝑤2

If we take a small step, it will take a long time 
to find good weights.

The learning rate is a hyperparameter we need 
to set!

Learning rate



Mini-Batch Gradient Descent

Gradient descent algorithm:

W = random_normal(K, D) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values 
drawn from a normal distribution

For a fixed number 
of iterations… 

imagesloss function

Update the weight in the opposite 
direction of the gradient

Compute the average loss for all 
images
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That sounds hard…

Calculate the gradient 
of the loss w.r.t. W.

labels



Mini-Batch Gradient Descent

Instead of computing the loss for every single training image at every 
iteration (expensive!!) we will only compute loss for a small randomly 
selected batch of data.

We will assume that this gives us a reasonable estimate of what the 
loss would look like over all the data.

In P4.2, your functions should accept batches of image data, instead of 
one image. The image matrix X will have shape (N, D) where N is batch 
size.
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Regularization

Let’s say we have a set of weights which classify all the images with 
100% accuracy.

Any scalar multiplication of the weight matrix will also classify the 
images perfectly. There are infinite of these matrices!!

That’s going to make it hard to find good weights.

𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋

𝑓𝑓 𝑋𝑋 = 𝛼𝛼𝑊𝑊 × 𝑋𝑋
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Regularization

The solution to this is to add an additional part to our loss function 
which tries to classify images correctly while keeping the weights small.

We’ll add a regularization loss to the overall loss function:

𝐿𝐿𝑝𝑝𝑝𝑝𝑑𝑑 𝑊𝑊 = 𝛼𝛼�
𝑖𝑖=1

𝐷𝐷

�
𝑗𝑗=1

𝐾𝐾

𝑤𝑤𝑗𝑗
𝑖𝑖 2

Regularization 
coefficient

(need to tune this)
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Sum of all the squared weights 
in the weight matrix



Regularization

The solution to this is to add an additional part to our loss function 
which tries to classify images correctly while keeping the weights small.

We’ll add a regularization loss to the overall loss function:

101

𝐿𝐿 𝑋𝑋,𝑊𝑊,𝑦𝑦 = 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊,𝑋𝑋, 𝑦𝑦 + 𝐿𝐿𝑝𝑝𝑝𝑝𝑑𝑑 𝑊𝑊

𝐿𝐿𝑝𝑝𝑝𝑝𝑑𝑑 𝑊𝑊 = 𝛼𝛼�
𝑖𝑖=1

𝐷𝐷

�
𝑗𝑗=1

𝐾𝐾

𝑤𝑤𝑗𝑗
𝑖𝑖 2



Tuning Hyperparameters

Play with the parameters in the notebook! 

Maybe even try implementing a validation fold or cross validation to find reg and 
lr.
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Make these as high as you can
Probably small. Look between 0 and 1. 
Look between a very small number (like 10−6) and ∼ 10.  

More things to try:
• Search on a log scale to get 

an idea of the right place to 
look (…0.01, 0.1, 1, 10…)

• Search coarse to fine.
• In early iterations, use a 

higher learning rate. 
Decrease it in later iterations 
(implement a learning rate 
schedule)



Tuning Hyperparameters

The loss curve is a plot of loss over time. It’s a good way to check your 
machine learning algorithm is learning.

103
Ideally the loss curve should look like this

It will probably look 
more like this

iteration



Tuning Hyperparameters

You can also look at the training and validation accuracies to see how 
your training is going
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Training accuracy should be 
the highest (otherwise you 
may have a bug) 

Validation accuracy should be 
lower, but still good

iteration



P4.2: Linear classifiers

Next time: Neural networks!

105

Your turn!
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