
Machine Learning:
Linear Classification & Optimization

ROB 102: Introduction to AI & Programming
Lecture 12

2021/11/29

Project 4:Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier (Today!)
3. Neural Network

2

Last time…

We saw the (k-)Nearest Neighbor algorithm.

We assumed an image is numerically close
to other images in the same class.

At training time, we saved ALL our training
data, and calculated distances at test time.

distance(,)

3

Summary: Nearest Neighbors

Pros:
+ Straight-forward to implement
+ No training necessary
+ “Pretty good” for many

problems

Cons:
− Requires a lot of memory
− Expensive at test time
− Distance isn’t always a good

indicator of class similarity
− We need many training

examples to make a good
classifier for high dimensions
(like images!)

4

Class Scores

What if we had a function that told us how “two-like” an image is?

The score should be HIGH the image is a two and LOW if the image is
probably not a two.

Most modern machine learning algorithms do classification like this.

𝑓𝑓2 = score

5

Class Scores

Now, we only need to learn the parameters of a function using our
training data. We don’t need to save the training data anymore.

6Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf

Recall: Machine Learning Algorithm

Training time:
Find a function 𝑓𝑓(𝑋𝑋) which does well at classifying training data.

Testing time:
Use 𝑓𝑓(𝑋𝑋) to classify new data.

7

Recall: Machine Learning Algorithm

Training time:
Find a function 𝑓𝑓(𝑋𝑋) which does well at classifying labelled data.

Testing time:
Use 𝑓𝑓(𝑋𝑋) to classify new data.

How do we choose what 𝑓𝑓(𝑋𝑋) should look like?

How do we learn 𝑓𝑓(𝑋𝑋)?
8

Recall: Machine Learning Algorithm

Training time:
Find a function f(X) which does well at classifying labelled data.

Testing time:
Use f(X) to classify new data.

How do we choose what 𝑓𝑓(𝑋𝑋) should look like?
 Next: Use a linear function

9

Linear Classification

Let’s look at a 2-D example. We want to classify our points into two
categories:

twos

not twos

10Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf

Linear Classification

We need a function, 𝑓𝑓(𝑋𝑋) which will help us find a label, 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , which
is 1 if the image is of a two, and -1 if it is not a two.

11Example Credit: (link)

twos

not twos

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf

Linear Classification

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑓𝑓 𝑋𝑋 ≥ 0
−1 if 𝑓𝑓 𝑋𝑋 < 0

12

twos

not twos

Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf

Linear Classification

What does this look like in code? Remember, our plan is to use a linear
function. In 1-D, this looks like this:

𝑓𝑓 𝑥𝑥 = 𝑤𝑤𝑤𝑤 + 𝑏𝑏

𝑓𝑓 𝑥𝑥

𝑥𝑥
𝑏𝑏

twos

not twos

13

Images as Vectors

We will rearrange our images into long vectors by flattening them. The
vectors will have length W*H.

14

row 1

row 2

row 3 row 1 row 3row 2

Image

For MNIST images, vectors will have length 28*28 = 784.

Input data “𝑋𝑋”

Linear Classification

For our image, with dimension D = 28*28:

𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷−1) 𝑥𝑥(𝐷𝐷)𝑋𝑋

𝑓𝑓 𝑋𝑋 = 𝑤𝑤(1)𝑥𝑥(1) + 𝑤𝑤(2)𝑥𝑥(2) + ⋯+ 𝑤𝑤(𝐷𝐷−1)𝑥𝑥 𝐷𝐷−1 + 𝑤𝑤(𝐷𝐷)𝑥𝑥 𝐷𝐷 + 𝑏𝑏

𝑤𝑤(1) 𝑤𝑤(2) ��� 𝑤𝑤(𝐷𝐷−1) 𝑤𝑤(𝐷𝐷)𝑊𝑊 𝑏𝑏𝑏𝑏

Input image

Parameters to learn
15

Dot Product

A convenient way of writing this is called the dot product of vectors:

𝑓𝑓 𝑋𝑋 = 𝑊𝑊 � 𝑋𝑋 + 𝑏𝑏

Dot product

16

Dot Product

+
𝑋𝑋
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

𝑓𝑓 𝑋𝑋 =
𝑊𝑊

� 𝑏𝑏

𝑏𝑏

= 𝑤𝑤(1)𝑥𝑥(1) + 𝑤𝑤(2)𝑥𝑥(2) + ⋯+ 𝑤𝑤(𝐷𝐷)𝑥𝑥 𝐷𝐷 + 𝑏𝑏

Input image

Parameters to learn

17

𝑤𝑤(1)

𝑤𝑤(2)

𝑤𝑤(𝐷𝐷)

Example: Dot Product

56 231

24 2

0.2

-0.5

0.1

2.0

1.1

𝑊𝑊 𝑏𝑏Image:

Parameters:

Pixel values

18

Example: Dot Product

56 231

24 2

56

231

24

2

1.1+�

= 0.2 � 56 + -0.5 � 231 + 0.1 � 24 + 2.0 � 2 + 1.1

= -96.8

𝑋𝑋𝑊𝑊 𝑏𝑏

19

0.2

-0.5

0.1

2.0

Linear separability

Let’s go back and take a look at our choice of model, 𝑓𝑓 𝑋𝑋 . What does
it mean to use a linear model?

𝑓𝑓 𝑋𝑋 = 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏

20

Linear separability

If we can draw a straight line through our data, then we say it is linearly
separable.

Linearly
separable

Linearly
separable

21Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf

Linear separability

If we can draw a straight line through our data, then we say it is linearly
separable.

Linear classifier assumption: The data is linearly separable.

Linearly
separable

Linearly
separable

22Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf

Linear separability

The problem with assumptions…

“All models are wrong, but some models are useful.”

NOT linearly
separable!!

NOT linearly
separable!!

Translation: Let’s assume our linear model is “good enough”
23Example Credit: (link)

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect2.pdf

Multiple Classes

In MNIST we have 10 classes,
so we learn 10 classifiers (10
weight vectors).

Each classifier gives a score
for a class. We predict that
the image belongs to the class
that gives it the highest score.

24

Classifier
score

Pixel value

Decision Regions

“two”
score

“three”
score

“four”
score

Multiple Classes

In MNIST we have 10 classes,
so we learn 10 classifiers (10
weight vectors).

Each classifier gives a score
for a class. We predict that
the image belongs to the class
that gives it the highest score.

25

Classifier
score

Pixel value

Decision Regions

“two”
score

“three”
score

“four”
score

Multiple Classes

If we have 𝐾𝐾 classes, we can find 𝐾𝐾 linear functions (𝐾𝐾 weight vectors
and biases):

𝑓𝑓1 𝑋𝑋 = 𝑊𝑊1 ⋅ 𝑋𝑋 + 𝑏𝑏1
𝑓𝑓2 𝑋𝑋 = 𝑊𝑊2 ⋅ 𝑋𝑋 + 𝑏𝑏2

𝑓𝑓𝐾𝐾 𝑋𝑋 = 𝑊𝑊𝐾𝐾 ⋅ 𝑋𝑋 + 𝑏𝑏𝐾𝐾
⋅⋅⋅

26

Linear Classifier Algorithm

Training: Find weights 𝑊𝑊 and
bias 𝑏𝑏 that do well at classifying
training data

Testing: For each class 𝑖𝑖, do:
𝑓𝑓𝑖𝑖 𝑋𝑋 = 𝑊𝑊𝑖𝑖 ⋅ 𝑋𝑋 + 𝑏𝑏𝑖𝑖

Assign label:
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = argmax

𝑖𝑖
𝑓𝑓𝑖𝑖(𝑋𝑋)

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
27Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf

Matrix Multiplication

For the multiple class case, we need to perform 𝐾𝐾 dot products
between the weight vectors and images.

28

=

𝑓𝑓1(𝑋𝑋)

𝑓𝑓2(𝑋𝑋)

𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑊𝑊1 ⋅ 𝑋𝑋 + 𝑏𝑏1

𝑊𝑊2 ⋅ 𝑋𝑋 + 𝑏𝑏2

𝑊𝑊𝐾𝐾 ⋅ 𝑋𝑋 + 𝑏𝑏𝐾𝐾

Matrix multiplication allows us to do this operation in one step.

Matrix Multiplication

+𝑤𝑤1
1 𝑤𝑤1

2 ��� 𝑤𝑤1
𝐷𝐷

𝑋𝑋

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

= 𝑊𝑊1 × 𝑏𝑏1

𝑏𝑏2

𝑏𝑏𝐾𝐾

𝑏𝑏
𝑓𝑓1(𝑋𝑋)

𝑓𝑓2(𝑋𝑋)

𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑊𝑊2

𝑊𝑊𝐾𝐾

𝑤𝑤2
1 𝑤𝑤2

2 ��� 𝑤𝑤2
𝐷𝐷

𝑤𝑤𝐾𝐾
1 𝑤𝑤𝐾𝐾

2 ��� 𝑤𝑤𝐾𝐾
𝐷𝐷

⋅⋅⋅ Matrix
multiplication

29

Matrix multiplication takes the dot product between each row of the first matrix
with each column of the second matrix.

Example: Matrix Multiplication

56 231

24 2

0.2 -0.5 0.1 2.0

1.1

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

Image:
Parameters:

Pixel values

1.1 -0.7 0.6 -0.2𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

-0.2 0.0 0.4 1.3𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

0.9𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

-0.3𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑

30

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+×
𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋)

31

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋)

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+×

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋) = 0.2 � 56 + -0.5 � 231 + 0.1 � 24 + 2.0 � 2 + 1.1

= -96.8

𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑

-96.8

32

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋)

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋) = -0.2 � 56 + 0.0 � 231 + 0.4 � 24 + 1.3 � 2 + -0.3

= 0.7

𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑

-96.8

0.7

33

×

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋)

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋) = 1.1 � 56 + -0.7 � 231 + 0.6 � 24 + -0.2 � 2 + 0.9

= -85.2

𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑

-96.8

0.7

-85.2

34

×

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋)

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋)

Example: Linear Classification

56 231

24 2

0.2 -0.5 0.1 2.0 56

231

24

2

1.1+
𝑋𝑋

-0.2 0.0 0.4 1.3

1.1 -0.7 0.6 -0.2 0.9

-0.3

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑

-96.8

0.7

-85.2

Prediction: Dog!

35

×

Matrix Multiplication in Julia

36

The * operation between two
matrices is a matrix multiplication
in Julia.

Project 4: Matrix Multiplication

+
𝑋𝑋

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

= 𝑊𝑊1

×
𝑏𝑏

𝑊𝑊2 𝑊𝑊𝐾𝐾

⋅⋅⋅

Matrix
multiplication

37

𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷)

𝑤𝑤2
1

𝑤𝑤2
2

𝑤𝑤2
𝐷𝐷

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

Note: This will give us the same answer, 𝑋𝑋 ⋅ 𝑊𝑊𝑖𝑖 with instead of 𝑊𝑊𝑖𝑖 ⋅ 𝑋𝑋. Project 4
uses this representation (images stacked in rows).

𝑓𝑓1(𝑋𝑋) 𝑓𝑓2(𝑋𝑋) ��� 𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑏𝑏1 𝑏𝑏2 ��� 𝑏𝑏𝐾𝐾

Matrix Shapes

+
𝑋𝑋

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

= 𝑊𝑊1

×
𝑏𝑏

𝑊𝑊2 𝑊𝑊𝐾𝐾

⋅⋅⋅

38

𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷)

𝑤𝑤2
1

𝑤𝑤2
2

𝑤𝑤2
𝐷𝐷

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

𝑓𝑓1(𝑋𝑋) 𝑓𝑓2(𝑋𝑋) ��� 𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑏𝑏1 𝑏𝑏2 ��� 𝑏𝑏𝐾𝐾

We write matrix shape as:
#rows x #columns

Or: (rows, columns)

1 x D D x K 1 x K

1 x K

Inner dimensions match!

Matrix Shapes

+𝑤𝑤1
1 𝑤𝑤1

2 ��� 𝑤𝑤1
𝐷𝐷

𝑋𝑋

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

= 𝑊𝑊1 × 𝑏𝑏1

𝑏𝑏2

𝑏𝑏𝐾𝐾

𝑏𝑏
𝑓𝑓1(𝑋𝑋)

𝑓𝑓2(𝑋𝑋)

𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑊𝑊2

𝑊𝑊𝐾𝐾

𝑤𝑤2
1 𝑤𝑤2

2 ��� 𝑤𝑤2
𝐷𝐷

𝑤𝑤𝐾𝐾
1 𝑤𝑤𝐾𝐾

2 ��� 𝑤𝑤𝐾𝐾
𝐷𝐷

⋅⋅⋅
39

K x 1 K x D D x 1 K x 1

K x 1

Inner dimensions match!

We write matrix shape as:
#rows x #columns

Or: (rows, columns)

Matrix Multiplication in Julia

40

Legal!

The inner dimensions match:

(4, 3) x (3, 2) → (4, 2)

Matrix Multiplication in Julia

41

We get the same answer if we do dot products
between the rows of A and the columns of B!

Dot product between
row of A and column of B

Iterate through rows of A
Iterate through cols of B

Matrix Multiplication in Julia

42

Illegal 

The inner dimensions don’t match:

(4, 3) x (2, 3) → Fails!

One more trick…

43

+
𝑋𝑋

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

𝑊𝑊1

×
𝑏𝑏

𝑊𝑊2 𝑊𝑊𝐾𝐾

⋅⋅⋅𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷)

𝑤𝑤K
1

𝑤𝑤K
2

𝑤𝑤𝐾𝐾
𝐷𝐷

�𝑊𝑊

=𝑓𝑓1(𝑋𝑋) 𝑓𝑓2(𝑋𝑋) ��� 𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑏𝑏1 𝑏𝑏2 ��� 𝑏𝑏𝐾𝐾

𝑤𝑤2
1

𝑤𝑤2
2

𝑤𝑤2
𝐷𝐷

One more trick…

44

𝑋𝑋

𝑤𝑤1
1

𝑤𝑤1
2

𝑤𝑤1
𝐷𝐷

𝑊𝑊1

×

𝑏𝑏

𝑊𝑊2 𝑊𝑊𝐾𝐾

⋅⋅⋅𝑥𝑥(1) 𝑥𝑥(2) ��� 𝑥𝑥(𝐷𝐷)

𝑤𝑤2
1

𝑤𝑤2
2

𝑤𝑤2
𝐷𝐷

𝑤𝑤K
1

𝑤𝑤𝐾𝐾
2

𝑤𝑤𝐾𝐾
𝐷𝐷

�𝑊𝑊

=𝑓𝑓1(𝑋𝑋) 𝑓𝑓2(𝑋𝑋) ��� 𝑓𝑓𝐾𝐾(𝑋𝑋)

𝑏𝑏1 𝑏𝑏2 ��� 𝑏𝑏𝐾𝐾

𝑊𝑊

𝑓𝑓 𝑋𝑋 = 𝑋𝑋 × 𝑊𝑊
Now we only have one matrix
to learn!

**but (D+1) x K parameters

1

Add a one

Images as Matrices

When we have multiple images, we will stack them up into a big matrix.
For N images, the matrix will have size Nx(W*H).

46

image 1

image 2

image 3

image 4

image 6

image 5

N images

MNIST has 60,000 training images. The training image matrix will have size 60,000x784.

Exercise: Can you calculate
the class scores for all the
images using one matrix
multiplication?

Training the model

How do we find 𝑾𝑾?

We will use optimization!

𝑓𝑓 𝑋𝑋 = 𝑋𝑋 × 𝑾𝑾

47

Gradient Descent Optimization

An optimization algorithm helps
us find the best local (lowest or
highest) value of a function.

We will use an algorithm called
gradient descent to find the
weights.

First, we need something to
optimize.

48

(Link to GIF)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

How can we train a linear classifier?

Which of these
classifiers is better?

Recall: Overfitting
We would like our
model to perform well
on new data, even if
that sacrifices
performance on
training data.

49

How can we train a linear classifier?

Idea: We want to find a function which
maximizes a margin.

This will make our algorithm more stable to
perturbations in the input.

We might misclassify an example or two in our
training set, but hopefully we’ll get a function
which is better at classifying new images.

very small
margin

50

Loss Function

A loss function tells us how good a model is at classifying an image.

The loss is LOW if we’re doing a good job at classifying, and HIGH if
we’re doing a bad job.

Our goal is to find weights W that minimize the loss. This is called
optimization. (More on that later).

51

Support Vector Machine (SVM) Loss

Idea: The score for the correct class of an image should be higher than
the other scores by some margin.

Aside: Why is it called “support vector machine”?

support
vector

support
vector

52

SVM Loss

Goal: Images should be classified correctly by at least a margin Δ.

Say for some image 𝑋𝑋, its correct label is 𝑦𝑦 with score 𝑓𝑓𝑦𝑦 𝑋𝑋 . For all
classes 𝑖𝑖 ≠ 𝑦𝑦, we want:

𝑓𝑓𝑦𝑦 𝑋𝑋 ≥ 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ

In other words, the score for some incorrect class, 𝑓𝑓𝑖𝑖 𝑋𝑋 is less than the
correct class score by at least Δ.

Correct class
score

Incorrect class score

53

SVM Loss

If the margin condition is met, then we’re happy! We will set 𝐿𝐿𝑖𝑖 = 0.
Otherwise, the loss will be the amount by which we are off:

𝐿𝐿𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦(𝑋𝑋)
The total loss is the sum of the losses for each class that is not correct:

𝐿𝐿 = �
∀𝑖𝑖 ∖𝑦𝑦

�𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

Note: ∀ 𝑖𝑖 ∖ 𝑦𝑦 means “for all values of 𝑖𝑖 except 𝑦𝑦 ”

Correct class
score

Incorrect class score

54

SVM Loss

If the margin condition is met, then we’re happy! We will set 𝐿𝐿𝑖𝑖 = 0.
Otherwise, the loss will be the amount by which we are off:

𝐿𝐿𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦(𝑋𝑋)
The total loss is the sum of the losses for each class that is not correct:

𝐿𝐿 = �
∀𝑖𝑖 ∖𝑦𝑦

�𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

In English: For each incorrect class, add its loss to the total, if it wasn’t
less than the correct class by the margin.

Correct class
score

Incorrect class score

55

Example: SVM Loss

scores

Exercise: Find the SVM
Loss for each image.

classes

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

56Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf

Example: SVM Loss

Exercise: Find the SVM
Loss for each image.

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 6.1 – 3.2 = 2.9

Δ = 1

5.1 + 1 = 6.1 > 3.2

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

car:

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0

-1.7 + 1 = -0.7 < 3.2frog:

𝐿𝐿 = 2.9 + 0 = 2.92.9
57Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf

Example: SVM Loss

Exercise: Find the SVM
Loss for each image.

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 0

Δ = 1

1.3 + 1 = 2.3 < 4.9

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

cat:

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0

2.0 + 1 = 3.0 < 4.9frog:

𝐿𝐿 = 0 + 0 = 002.9
58Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf

Example: SVM Loss

Exercise: Find the SVM
Loss for each image.

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 3.2 - -3.1 = 6.3

Δ = 1

2.2 + 1 = 3.2 > -3.1

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

cat:

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3.5 - -3.1 = 6.6

2.5 + 1 = 3.5 > -3.1car:

𝐿𝐿 = 6.3 + 6.6 = 12.912.92.9 0
59Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf

Example: SVM Loss

Exercise: Find the SVM
Loss for each image.

Δ = 1

𝐿𝐿𝑖𝑖 = �𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

Total Loss:
= (2.9 + 0 + 12.9) / 3
= 5.27

12.92.9 0
60Image Credit: Johnson (link)

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/FA2020/598_FA2020_lecture03.pdf

How can we train a linear classifier?

Goal: Find a set of weights 𝑊𝑊 that minimizes the loss.

61

Setting the weights

Idea #1: Random Search
Until we’re happy with the performance, do:

1. Set weights randomly
2. Check how well the classifier does

𝑤𝑤1

𝑤𝑤2 Not great…

Red = Loss function is low

62

Setting the weights

Idea #1: Random Search
Until we’re happy with the performance, do:

1. Set weights randomly
2. Check how well the classifier does

𝑤𝑤1

𝑤𝑤2

Better!

Red = Loss function is low

63

Setting the weights

Idea #1: Random Search
Until we’re happy with the performance, do:

1. Set weights randomly
2. Check how well the classifier does

𝑤𝑤1

𝑤𝑤2

Worse… Throw this one out

Red = Loss function is low

64

Setting the weights

Idea #1: Random Search
Until we’re happy with the performance, do:

1. Set weights randomly
2. Check how well the classifier does

𝑤𝑤1

𝑤𝑤2

Good!

Red = Loss function is low

Bad idea! We have 785x10 different numbers
to find. This will take forever.

65

Setting the weights

Imagine you’re hiking
(blindfolded!). You want to get
to the lowest point of the hill.

Idea:
1. Try to take a step.
2. Stay there if you get lower

than your current location.
3. Repeat!

66

Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Better

Red = Loss function is low

67

Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Worse

Red = Loss function is low

68

Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Better!

Red = Loss function is low

69

Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Worse

Red = Loss function is low

70

Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Better!

Red = Loss function is low

71

Setting the weights

Idea #2: Random Local Search
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in a random direction
2. If the loss improves, update the weights

𝑤𝑤1

𝑤𝑤2

Red = Loss function is lowBetter, but still not great. It will be hard to
find the right direction to step.

72

Rate of Change

Can we do better?

Yes! With Calculus 

𝑦𝑦

𝑥𝑥

73

Rate of Change

The slope at a point is given by:

This is the rate of change of 𝑦𝑦. It tells
us how 𝑦𝑦 changes if we change 𝑥𝑥 a
little.

𝑦𝑦

𝑥𝑥Δ𝑥𝑥

Δ𝑦𝑦

slope = Δ𝑦𝑦
Δ𝑥𝑥

74

Rate of Change

The slope at a point is given by:

Recall from calculus:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= lim
Δ𝑥𝑥→0

Δ𝑦𝑦
Δ𝑥𝑥

𝑦𝑦

𝑥𝑥Δ𝑥𝑥

Δ𝑦𝑦

rate of change = Δ𝑦𝑦
Δ𝑥𝑥

gradient

75

Gradient

Recall from calculus:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= lim
Δ𝑥𝑥→0

Δ𝑦𝑦
Δ𝑥𝑥

In 2D, the gradient is the direction and rate of
fastest increase.

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

gradients in 2D

partial derivatives 76

Gradient

Recall from calculus:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= lim
Δ𝑥𝑥→0

Δ𝑦𝑦
Δ𝑥𝑥

In 2D, the gradient is the direction and rate of
fastest increase.

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low

Idea: We can use the gradient
of the loss function to figure
out how to update our weights!

gradients in 2D

77

Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low

78

Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low

79

Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low

80

Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low

81

Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low

82

Setting the weights: Gradient Descent

Idea #3: Following the gradient
Set the weights randomly
Until we’re happy with the performance, do:

1. Take a small step in the direction of the
gradient

𝑤𝑤1

𝑤𝑤2

Red = Loss function is low
Better! And we can compute the gradients
ahead of time because we know how to do
the derivatives.

83

Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W)

W = W – step_size * loss_grad

84

Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W)

W = W – step_size * loss_grad

Initialize weights to small values
drawn from a normal distribution

85

Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W)

W = W – step_size * loss_grad

Initialize weights to small values
drawn from a normal distribution

For a fixed number
of iterations…

86

Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values
drawn from a normal distribution

For a fixed number
of iterations…

Calculate the gradient
of the loss w.r.t. W.

imagesloss function

87

labels

Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values
drawn from a normal distribution

For a fixed number
of iterations…

imagesloss function

Update the weight in the opposite
direction of the gradient Gradient is the direction of maximum

increase, and we want the loss to decrease,
so we use the negative of the gradient.

88

Calculate the gradient
of the loss w.r.t. W.

labels

Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values
drawn from a normal distribution

For a fixed number
of iterations…

imagesloss function

Update the weight in the opposite
direction of the gradient

How do we calculate the gradient?

How do we pick the step size?
89

Calculate the gradient
of the loss w.r.t. W.

labels

Computing the Gradient

We can take the gradient of the loss with respect to each weight:

The gradient of the loss with respect to the weights is a matrix with the
same size as the weights (D x K).

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊

=

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
(1) ⋯

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐾𝐾
(1)

⋮ ⋱ ⋮
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
(𝐷𝐷) ⋯

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐾𝐾
(𝐷𝐷)

90

Computing the Gradient

We can take the gradient of the loss with respect to each weight:

We know the loss function, so we can compute the gradient
beforehand. You are given a function to compute the gradients in P4!

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕

=

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
(1) ⋯

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐾𝐾
(1)

⋮ ⋱ ⋮
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤1
(𝐷𝐷) ⋯

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐾𝐾
(𝐷𝐷)

91

Computing the Gradient

You are given a function to compute the gradients in P4!

If you want to derive them, check out the notes for Stanford course
CS231n. (link)

92

https://cs231n.github.io/optimization-1/

Computing the Gradient in Julia

The provided gradient function is called in the function that computes
the loss

93

This function computes gradients

Optimization using Gradient Descent

Gradient descent algorithm:

W = random_normal(D, K) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values
drawn from a normal distribution

For a fixed number
of iterations…

imagesloss function

Update the weight in the opposite
direction of the gradient

How do we calculate the gradient?

How do we pick the step size?
94

Calculate the gradient
of the loss w.r.t. W.

labels

Learning Rate

The step size, which tells us how big of a step to take along the
gradient, is called the learning rate.

95

𝑤𝑤1

𝑤𝑤2

If we take a huge step, we might overshoot,
and get farther away from the minimum.

Learning Rate

The step size, which tells us how big of a step to take along the
gradient, is called the learning rate.

96

𝑤𝑤1

𝑤𝑤2

If we take a small step, it will take a long time
to find good weights.

The learning rate is a hyperparameter we need
to set!

Learning rate

Mini-Batch Gradient Descent

Gradient descent algorithm:

W = random_normal(K, D) * eps

for iteration in 1:N do:

loss_grad = SVM_grad(SVM_loss, X, W, y)

W = W – step_size * loss_grad

Initialize weights to small values
drawn from a normal distribution

For a fixed number
of iterations…

imagesloss function

Update the weight in the opposite
direction of the gradient

Compute the average loss for all
images

97

That sounds hard…

Calculate the gradient
of the loss w.r.t. W.

labels

Mini-Batch Gradient Descent

Instead of computing the loss for every single training image at every
iteration (expensive!!) we will only compute loss for a small randomly
selected batch of data.

We will assume that this gives us a reasonable estimate of what the
loss would look like over all the data.

In P4.2, your functions should accept batches of image data, instead of
one image. The image matrix X will have shape (N, D) where N is batch
size.

98

Regularization

Let’s say we have a set of weights which classify all the images with
100% accuracy.

Any scalar multiplication of the weight matrix will also classify the
images perfectly. There are infinite of these matrices!!

That’s going to make it hard to find good weights.

𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋

𝑓𝑓 𝑋𝑋 = 𝛼𝛼𝛼𝛼 × 𝑋𝑋

99

Regularization

The solution to this is to add an additional part to our loss function
which tries to classify images correctly while keeping the weights small.

We’ll add a regularization loss to the overall loss function:

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝑊𝑊 = 𝛼𝛼�
𝑖𝑖=1

𝐷𝐷

�
𝑗𝑗=1

𝐾𝐾

𝑤𝑤𝑗𝑗
𝑖𝑖 2

Regularization
coefficient

(need to tune this)
100

Sum of all the squared weights
in the weight matrix

Regularization

The solution to this is to add an additional part to our loss function
which tries to classify images correctly while keeping the weights small.

We’ll add a regularization loss to the overall loss function:

101

𝐿𝐿 𝑋𝑋,𝑊𝑊,𝑦𝑦 = 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊,𝑋𝑋, 𝑦𝑦 + 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝑊𝑊

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝑊𝑊 = 𝛼𝛼�
𝑖𝑖=1

𝐷𝐷

�
𝑗𝑗=1

𝐾𝐾

𝑤𝑤𝑗𝑗
𝑖𝑖 2

Tuning Hyperparameters

Play with the parameters in the notebook!

Maybe even try implementing a validation fold or cross validation to find reg and
lr.

102

Make these as high as you can
Probably small. Look between 0 and 1.
Look between a very small number (like 10−6) and ∼ 10.

More things to try:
• Search on a log scale to get

an idea of the right place to
look (…0.01, 0.1, 1, 10…)

• Search coarse to fine.
• In early iterations, use a

higher learning rate.
Decrease it in later iterations
(implement a learning rate
schedule)

Tuning Hyperparameters

The loss curve is a plot of loss over time. It’s a good way to check your
machine learning algorithm is learning.

103
Ideally the loss curve should look like this

It will probably look
more like this

iteration

Tuning Hyperparameters

You can also look at the training and validation accuracies to see how
your training is going

104

Training accuracy should be
the highest (otherwise you
may have a bug)

Validation accuracy should be
lower, but still good

iteration

P4.2: Linear classifiers

Next time: Neural networks!

105

Your turn!

	Machine Learning: �Linear Classification & Optimization
	Project 4:Machine Learning
	Last time…
	Summary: Nearest Neighbors
	Class Scores
	Class Scores
	Recall: Machine Learning Algorithm
	Recall: Machine Learning Algorithm
	Recall: Machine Learning Algorithm
	Linear Classification
	Linear Classification
	Linear Classification
	Linear Classification
	Images as Vectors
	Linear Classification
	Dot Product
	Dot Product
	Example: Dot Product
	Example: Dot Product
	Linear separability
	Linear separability
	Linear separability
	Linear separability
	Multiple Classes
	Multiple Classes
	Multiple Classes
	Linear Classifier Algorithm
	Matrix Multiplication
	Matrix Multiplication
	Example: Matrix Multiplication
	Example: Linear Classification
	Example: Linear Classification
	Example: Linear Classification
	Example: Linear Classification
	Example: Linear Classification
	Matrix Multiplication in Julia
	Project 4: Matrix Multiplication
	Matrix Shapes
	Matrix Shapes
	Matrix Multiplication in Julia
	Matrix Multiplication in Julia
	Matrix Multiplication in Julia
	One more trick…
	One more trick…
	Images as Matrices
	Training the model
	Gradient Descent Optimization
	How can we train a linear classifier?
	How can we train a linear classifier?
	Loss Function
	Support Vector Machine (SVM) Loss
	SVM Loss
	SVM Loss
	SVM Loss
	Example: SVM Loss
	Example: SVM Loss
	Example: SVM Loss
	Example: SVM Loss
	Example: SVM Loss
	How can we train a linear classifier?
	Setting the weights
	Setting the weights
	Setting the weights
	Setting the weights
	Setting the weights
	Setting the weights
	Setting the weights
	Setting the weights
	Setting the weights
	Setting the weights
	Setting the weights
	Rate of Change
	Rate of Change
	Rate of Change
	Gradient
	Gradient
	Setting the weights: Gradient Descent
	Setting the weights: Gradient Descent
	Setting the weights: Gradient Descent
	Setting the weights: Gradient Descent
	Setting the weights: Gradient Descent
	Setting the weights: Gradient Descent
	Optimization using Gradient Descent
	Optimization using Gradient Descent
	Optimization using Gradient Descent
	Optimization using Gradient Descent
	Optimization using Gradient Descent
	Optimization using Gradient Descent
	Computing the Gradient
	Computing the Gradient
	Computing the Gradient
	Computing the Gradient in Julia
	Optimization using Gradient Descent
	Learning Rate
	Learning Rate
	Mini-Batch Gradient Descent
	Mini-Batch Gradient Descent
	Regularization
	Regularization
	Regularization
	Tuning Hyperparameters
	Tuning Hyperparameters
	Tuning Hyperparameters
	P4.2: Linear classifiers

