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Project 4: Machine Learning

Implement three machine learning algorithms to classify images from 
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier 
3. Neural Network
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Where we are

distance(     ,     ) 𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

 P4.1: Nearest Neighbors  P4.2: Linear Classifier
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Where we are

 P4.1: Nearest Neighbors  P4.2: Linear Classifier

+ Straight-forward to implement
+ No training necessary

− Requires a lot of memory
− Expensive at computation time
− Distance isn’t always a good 

indicator of class similarity

+ Only one matrix to learn
+ Fast at test time

− Can only represent linearly 
separable data

Can we do better than a 
linear model?
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Project 4: Machine Learning

Implement three machine learning algorithms to classify images from 
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier 
3. Neural Network (Today!)
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Where we are

Training algorithm:

Initialize the parameters randomly
For 𝑁𝑁 iterations, do:

1. Sample a batch of training images
2. Evaluate the loss and gradients for the batch using current parameters
3. Update the parameters using the gradients

For linear classifier, this is just the 
weight matrix and the bias

Mini-batch sampling

We used the SVM classification 
loss with regularization

Gradient Descent! The learning 
rate controls how fast we learn

Parameters to learn: 𝑊𝑊, 𝑏𝑏
Hyperparameters to tune:
learning rate, reg. coefficient

We’ll use the same algorithm 
for training a neural network!
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Where we are

Prediction algorithm (test time): 

Given a test image & parameters from the training stage:
1. Calculate class scores
2. Assign label of class with the highest score.

𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

𝑊𝑊, 𝑏𝑏

y_pred = argmax(scores)

We’ll use the same algorithm for 
evaluating a neural network!
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This time…

• The neural network model
• Training a neural network
• Briefly:

• Backpropagation
• Convolutional Neural Networks

P4.3

Not needed for P4.3!
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This time: Neural Networks

Linear classifier:
𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

Q: How can we represent a more complex, non-linear function?
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This time: Neural Networks

Linear classifier:
𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

Neural network (2-layers):

𝑓𝑓 𝑋𝑋 = 𝑊𝑊2 × max 𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1, 0 + 𝑏𝑏2

A neural network can approximate any* function!
(*with some caveats)

A good visual explanation: (link)
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This time: Neural Networks

Linear classifier:
𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

Neural network (2-layers):

𝑓𝑓 𝑋𝑋 = 𝑊𝑊2 × max 𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1, 0 + 𝑏𝑏2

Neural network (3-layers):

𝑓𝑓 𝑋𝑋 = 𝑊𝑊3 × max 𝑊𝑊2 × max 𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏3

How are these equations neural networks??
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The perceptron

A perceptron is an algorithm for binary (linear!) classification.

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0
−1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0Σ𝑤𝑤(2)𝑥𝑥(2) + 𝑏𝑏
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The perceptron

A perceptron is an algorithm for binary (linear!) classification.

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0
−1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0

Recall: This is our linear classifier!

Σ𝑤𝑤(2)𝑥𝑥(2) + 𝑏𝑏
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Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons
(without the             )

Σ
𝑤𝑤(2,1)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

+𝑏𝑏(2)

𝑠𝑠(2) = �
𝑖𝑖

𝑤𝑤(2,𝑖𝑖)𝑥𝑥(𝑖𝑖) + 𝑏𝑏(2)

Pixels
weights

bias
“two” class 
score
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Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons
(without the             )

Σ𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

+𝑏𝑏(2)

𝑠𝑠(2)

𝑤𝑤(3,3)

Σ +𝑏𝑏(3)

𝑠𝑠(3) = �
𝑖𝑖

𝑤𝑤(3,𝑖𝑖)𝑥𝑥(𝑖𝑖) + 𝑏𝑏(3)
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“three” class 
score

= �
𝑖𝑖

𝑤𝑤(2,𝑖𝑖)𝑥𝑥(𝑖𝑖) + 𝑏𝑏(2)



Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons
(without the             )

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(2)

Σ 𝑠𝑠(3)

Σ
Σ

𝑠𝑠(4)

𝑠𝑠(5)

𝑊𝑊(2) ⋅ 𝑋𝑋 + 𝑏𝑏(2)

𝑊𝑊(3) ⋅ 𝑋𝑋 + 𝑏𝑏(3)

𝑊𝑊(4) ⋅ 𝑋𝑋 + 𝑏𝑏(4)

𝑊𝑊(5) ⋅ 𝑋𝑋 + 𝑏𝑏(5)

class scores
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Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons
(without the             )

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(2)

Σ 𝑠𝑠(3)

Σ
Σ

𝑠𝑠(4)

𝑠𝑠(5)

𝑆𝑆 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏
class scores

Last time, we saw we can 
get all the class scores with 
a matrix multiplication
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Building a Neural Network

Our perceptron can only represent linearly separable data. But, a 
network of perceptrons can represent more complex functions.

One more problem: This function               is not differentiable!

𝑤𝑤(2)𝑥𝑥(2)
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0

−1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0
+𝑏𝑏Σ
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We’ll replace              with a continuous function, which will allow us to 
take the derivative of our loss function and apply Gradient Descent.

Our new function 𝜎𝜎(⋅) is called the activation function.

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0
−1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0

Building a Neural Network

𝑠𝑠 = �𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0
0 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0

+𝑏𝑏Σ
𝜎𝜎(⋅)

19

𝑤𝑤(2)𝑥𝑥(2)



Activation functions

We will be using the ReLU activation function (Rectified Linear Unit). 
This is one of the most common choices in modern neural networks.

𝑧𝑧

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑧𝑧

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑧𝑧 = �𝑧𝑧 if 𝑧𝑧 ≥ 0
0 else

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑧𝑧 = max 0, 𝑧𝑧
equivalent
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Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and 
activation functions.

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(2)

�
𝑖𝑖

𝑤𝑤1
1,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏(1)

Σ
𝑠𝑠(3)

Σ
Σ Σ

Σ
ℎ(1) = max 0,�

𝑖𝑖

𝑤𝑤1
1,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏(1)

“hidden” layer value
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Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and 
activation functions.

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

�
𝑖𝑖

𝑤𝑤1
1,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏1

1

Σ

Σ
Σ Σ

Σ
�
𝑖𝑖

𝑤𝑤1
2,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏1

2

�
𝑖𝑖

𝑤𝑤1
3,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏1

3

�
𝑖𝑖

𝑤𝑤1
4,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏1

4

�
𝑖𝑖

𝑤𝑤2
1,𝑖𝑖 ℎ(𝑖𝑖) + 𝑏𝑏2

(1)
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𝑠𝑠(3)



Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and 
activation functions.

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

Σ

Σ
Σ Σ

Σ

23

𝑠𝑠(2)

𝑠𝑠(3)



Building a Neural Network

Our final two-layer neural network looks like this:

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

Σ

Σ
Σ Σ

Σ

Input Layer
Hidden Layer

Output Layer

neuron

24
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Fully Connected Neural Network

𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1
𝐻𝐻 = max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1

𝑊𝑊2 × 𝐻𝐻 + 𝑏𝑏2

We call this a “fully connected” 
network because each node is 
connected to all nodes in the 
previous layer.

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

Σ

Σ
Σ Σ

Σ

Input Layer
Hidden Layer

Output Layer

25
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Neural Network Computation

+

𝑤𝑤1
1,1 𝑤𝑤1

1,2 ��� 𝑤𝑤1
1,𝐷𝐷

𝑋𝑋

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

= ×

𝑏𝑏1
(1)

𝑏𝑏1
(2)

𝑏𝑏1
(𝐽𝐽)

𝑏𝑏1

ℎ(1)

ℎ(2)

ℎ(𝐽𝐽)

𝑊𝑊1

𝑤𝑤1
2,1 𝑤𝑤1

2,2 ��� 𝑤𝑤1
2,𝐷𝐷

𝑤𝑤1
𝐽𝐽,1 𝑤𝑤1

𝐽𝐽,2 ��� 𝑤𝑤1
𝐽𝐽,𝐷𝐷

⋅⋅⋅

max ,   0

𝐷𝐷, 1shapes: 𝐽𝐽,𝐷𝐷 𝐽𝐽, 1

Input image

Hidden layer

Biases to learnWeights to learn
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Recall: Matrix Multiplication in Julia

27

Legal! 

The inner dimensions match:

(4, 3) x (3, 2) → (4, 2)



Recall: Matrix Multiplication in Julia

28

Illegal 

The inner dimensions don’t match:

(4, 3) x (2, 3) → Fails!



Neural Network Computation

+

𝑋𝑋

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

= ×

𝑏𝑏1
(1)

𝑏𝑏1
(2)

𝑏𝑏1
(𝐽𝐽)

𝑏𝑏1

ℎ(1)

ℎ(2)

ℎ(𝐽𝐽)

𝑊𝑊1

⋅⋅⋅

max ,   0

𝐷𝐷, 1shapes: 𝐽𝐽,𝐷𝐷 𝐽𝐽, 1

Input image

Hidden layer

Biases to learnWeights to learn

Inner dim. match! 29

𝑤𝑤1
1,1 𝑤𝑤1

1,2 ��� 𝑤𝑤1
1,𝐷𝐷

𝑤𝑤1
2,1 𝑤𝑤1

2,2 ��� 𝑤𝑤1
2,𝐷𝐷

𝑤𝑤1
𝐽𝐽,1 𝑤𝑤1

𝐽𝐽,2 ��� 𝑤𝑤1
𝐽𝐽,𝐷𝐷



Neural Network Computation

=

ℎ(1)

ℎ(2)

ℎ(𝐽𝐽)

max 0,�
𝑖𝑖

𝑤𝑤1
1,𝑖𝑖 𝑥𝑥 𝑖𝑖 + 𝑏𝑏1

(1)

max 0,�
𝑖𝑖

𝑤𝑤1
2,𝑖𝑖 𝑥𝑥 𝑖𝑖 + 𝑏𝑏1

(2)

max 0,�
𝑖𝑖

𝑤𝑤1
𝐽𝐽,𝑖𝑖 𝑥𝑥 𝑖𝑖 + 𝑏𝑏1

(𝐽𝐽)

Hidden layer
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Neural Network Computation

+

𝑤𝑤2
1,1 𝑤𝑤2

1,2 ��� 𝑤𝑤2
1,𝐽𝐽

𝐻𝐻

= ×

𝑏𝑏2
(1)

𝑏𝑏2
(2)

𝑏𝑏2
(𝐾𝐾)

𝑏𝑏2

𝑠𝑠(1)

𝑠𝑠(2)

𝑠𝑠(𝐾𝐾)

𝑊𝑊2

𝑤𝑤2
2,1 𝑤𝑤2

2,2 ��� 𝑤𝑤2
2,𝐽𝐽

𝑤𝑤2
𝐾𝐾,1 𝑤𝑤2

𝐾𝐾,2 ��� 𝑤𝑤2
𝐾𝐾,𝐽𝐽

⋅⋅⋅

𝐽𝐽, 1shapes: 𝐾𝐾, 𝐽𝐽 𝐾𝐾, 1

ℎ(1)

ℎ(2)

ℎ(𝐽𝐽)

Inner dim. match!

K = number of 
classes
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Neural Network Computation

=

𝑠𝑠(1)

𝑠𝑠(2)

𝑠𝑠(𝐾𝐾)

�
𝑖𝑖

𝑤𝑤𝟐𝟐
1,𝑖𝑖 ℎ 𝑖𝑖 + 𝑏𝑏2

(1)

�
𝑖𝑖

𝑤𝑤2
2,𝑖𝑖 ℎ 𝑖𝑖 + 𝑏𝑏2

(2)

�
𝑖𝑖

𝑤𝑤2
𝐾𝐾,𝑖𝑖 ℎ 𝑖𝑖 + 𝑏𝑏2

(𝐾𝐾)

Class scores
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Neural Network Computation

We can write a two-layer neural network as one big matrix 
multiplication:

scores = 𝑊𝑊2 × max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2
First linear layer

Second linear layer

Activation function

33



Why do we need an activation function?

Let’s look at our neural network equation:

scores = 𝑊𝑊2 × max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2

What if we removed the activation function?

scores = 𝑊𝑊2 × 𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2
= 𝑊𝑊2 × 𝑊𝑊1 × 𝑋𝑋 + 𝑊𝑊2 × 𝑏𝑏1 + 𝑏𝑏2

𝑊𝑊𝑊 𝑏𝑏𝑏
This is still just a 
linear classifier!
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Exercise:

56 231

24 2

0.2 -0.5 0.1 2.0 9.1

𝑏𝑏1

Image:

Parameters:

Pixel values

1.1 0.7 -0.9 -0.2
𝑊𝑊1

-0.2 0.0 0.4 1.3

-27

7.3

-1.9 1.0 0.9 2.1 2.1

0.8 0.9 0.0 1.4 -32

𝑏𝑏2
0.6 0.7 -0.1 -0.6

𝑊𝑊2 0.3 -0.3 2.2 -1.2

19

14

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = ?

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = ?

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ?
Find the class scores!
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Exercise: 56 231

24 2

𝑏𝑏1𝑊𝑊1

ℎ(1)

ℎ(2)

ℎ(3)

ℎ(4)

56

231

24

2

𝑋𝑋

× +max ,   0=

9.1

-27

7.3

2.1

0.2 -0.5 0.1 2.0

1.1 0.7 -0.9 -0.2

-0.2 0.0 0.4 1.3

-1.9 1.0 0.9 2.1

Hidden layer
36



Exercise:

56 231

24 2

ℎ(1)

ℎ(2)

ℎ(3)

ℎ(4)

𝐻𝐻 = max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 37



Exercise:

56 231

24 2

ℎ(1) = 0

ℎ(2) = 8.3

ℎ(3) = 174.3

ℎ(4) = 152.5
38



Exercise:

56 231

24 2

0.2 -0.5 0.1 2.0 9.1

𝑏𝑏1

Image:

Parameters:

Pixel values

1.1 0.7 -0.9 -0.2
𝑊𝑊1

-0.2 0.0 0.4 1.3

-27

7.3

-1.9 1.0 0.9 2.1 2.1

0.8 0.9 0.0 1.4 -32

𝑏𝑏2
0.6 0.7 -0.1 -0.6

𝑊𝑊2 0.3 -0.3 2.2 -1.2

19

14

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = ?

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = ?

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ?
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Exercise: 56 231

24 2

𝑏𝑏2𝑊𝑊2

𝐻𝐻

× +
𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

0

8.3

174.3

152.5

0.8 0.9 0.0 1.4

0.6 0.7 -0.1 -0.6

0.3 -0.3 2.2 -1.2=
-32

19

14

Class scores
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Exercise:

56 231

24 2

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊2 × 𝐻𝐻 + 𝑏𝑏2
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Exercise:

56 231

24 2

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = 188.97

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = 211.97

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = −84.12 Predicted class: 2 = dog
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This is a two-layer neural network (the input layer isn’t counted).

Fully Connected Neural Network

ℎ(1)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(1)

ℎ(4)

𝑠𝑠(2)

ℎ(2)

ℎ(3)

Input Layer
Hidden Layer

Output Layer
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Fully Connected Neural Network

ℎ(1)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

ℎ(4)

ℎ(2)

ℎ(3)

Input Layer
Hidden Layer

Output Layer

scores = 𝑊𝑊2 × max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2

Parameters to learn:
𝑊𝑊1,𝑊𝑊2, 𝑏𝑏1, 𝑏𝑏2

44

𝑠𝑠(1)

𝑠𝑠(2)



A three-layer neural network looks like this:

Fully Connected Neural Network

ℎ1
1

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(1)

ℎ1
4

𝑠𝑠(2)

ℎ1
2

ℎ1
3

Input Layer
Hidden Layer 1

Output Layer

ℎ2
1

ℎ2
4

ℎ2
2

ℎ2
3

Hidden Layer 2
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Fully Connected Neural Network

ℎ1
1

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

ℎ1
4

ℎ1
2

ℎ1
3

Input Layer
Hidden Layer 1

Output Layer

ℎ2
1

ℎ2
4

ℎ2
2

ℎ2
3

Hidden Layer 2

scores = 𝑊𝑊3 × max 0,𝑊𝑊2 × max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏3

Parameters to learn:
𝑊𝑊1,𝑊𝑊2,𝑊𝑊3, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3
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Deep Neural Networks

The number of hidden layers and the size of each hidden layer are 
hyperparameters we need to pick.

𝑋𝑋 𝑓𝑓 𝑋𝑋ℎ1 𝑊𝑊2 ℎ2 𝑊𝑊3 ℎ3 𝑊𝑊4 ℎ4 𝑊𝑊5 ℎ5

Back to Project 4… 
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P4.3: Forward Pass

We call the computation of the scores the forward pass because we 
are moving forward through the graph.

Your turn! 
Calculate the scores here. 
Also return H.

Put scores and H in these 
variables.

This is a typo!!
hidden_layer -> hidden

hidden
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Loss Function

We already have a function to tell us how good we are doing at 
classifying our images: the SVM loss!

𝐿𝐿 = �
∀𝑖𝑖 ∖𝑦𝑦

�𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

In English: For each incorrect class, add its loss to the total, if it wasn’t 
less than the correct class by the margin.

We will reuse the same loss function as for the linear classifier!

Correct class scoreIncorrect class score
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Regularization

We will apply regularization to the weight matrix just like in the linear 
classifier. 

But this time, we have two weight matrices!

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝑊𝑊1,𝑊𝑊2 = 𝛼𝛼 �
𝑖𝑖=1

𝐷𝐷×𝐽𝐽

𝑤𝑤1
𝑖𝑖 2

+ �
𝑖𝑖=1

𝐽𝐽×𝐾𝐾

𝑤𝑤2
𝑖𝑖 2

Regularization 
coefficient

(need to tune this)
Sum of all the squared weights 
in the weight matrices
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P4.3: Loss & Regularization

This will look very similar to the loss function in the linear classifier!

Your turn! 
Calculate the loss here.

Provided gradient computation

Replace with your computed value.

svm
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Updating the Weights

We know that our fully connected neural network is differentiable, so 
we can analytically calculate the gradients for each parameter.

Gradients are provided for you in P4.3.
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Updating the Weights

We know that our fully connected neural network is differentiable, so 
we can analytically calculate the gradients for each parameter.

Gradients are provided for you in P4.3.

We can use Gradient Descent to update 𝑊𝑊1, 𝑏𝑏1,𝑊𝑊2 and 𝑏𝑏2 just like we 
did in P4.2 (no bias trick this time!)
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Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values 
drawn from a normal distribution

Initialize biases to zero
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Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values 
drawn from a normal distribution

Initialize biases to zero

For a fixed number 
of iterations… 
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Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values 
drawn from a normal distribution

Initialize biases to zero
images labels

Sample a 
batch!

For a fixed number 
of iterations… 

Calculate the loss.
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Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values 
drawn from a normal distribution

Initialize biases to zero
images labels

Sample a 
batch!

For a fixed number 
of iterations… 

Calculate the gradients.

Calculate the loss.
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Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values 
drawn from a normal distribution

Initialize biases to zero
images labels

Sample a 
batch!

For a fixed number 
of iterations… 

Calculate the gradients.

Calculate the loss.

Update the parameters 
with gradient descent
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Putting it all together

Your turn! 
Write the training loop 
here.
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Tuning hyperparameters

The regularization coefficient 
and learning rate need to be 
tuned, like in P4.2.

The number of nodes (or 
neurons) in the hidden layer 
can also be tuned.

This line calls your training function. 
params contains the optimized 
weights when it’s finished.

hyperparameters

See last lecture (Lecture 12 on 
Optimization) for how to tune 
parameters.
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Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily 
large networks.

It uses the chain rule (from calculus).
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Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily 
large networks.

Step 1: Express a function as a graph.

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 ⋅ 𝑧𝑧
𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦

𝑓𝑓 = 𝑞𝑞 ⋅ 𝑧𝑧
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Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily 
large networks.

Step 2: Compute gradients.

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 ⋅ 𝑧𝑧 𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦

𝑓𝑓 = 𝑞𝑞 ⋅ 𝑧𝑧𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

= 1 ⋅ 𝑧𝑧

The chain rule!

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥
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Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily 
large networks.

Step 2: Compute gradients.

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 ⋅ 𝑧𝑧 𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦

𝑓𝑓 = 𝑞𝑞 ⋅ 𝑧𝑧𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝜕𝜕𝑞𝑞
𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

= 1 ⋅ 𝑧𝑧 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝜕𝜕𝑞𝑞

𝜕𝜕𝑦𝑦
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Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily 
large networks.

Step 2: Compute gradients.

𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦

𝑓𝑓 = 𝑞𝑞 ⋅ 𝑧𝑧𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 𝑞𝑞

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 ⋅ 𝑧𝑧

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧 65



Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily 
large networks.

ℎ(1)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(1)

ℎ(4)

𝑠𝑠(2)

ℎ(2)

ℎ(3)

Input Layer
Hidden Layer

Output Layer

Instead of computing the derivative 
of the loss for a huge network, 
compute the gradient of each layer 
with respect to the input.

That’s why it’s called the backward pass!

Then we can propagate the gradients 
backwards through the graph.
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Where to go from here: Convolutional Neural Networks

Many modern deep learning methods for computer vision use 
Convolutional Neural Networks (CNNs).

(link)

Instead of flattening the image into 
a vector and having a giant weight 
matrix, we slide a kernel across the 
image. This is a convolution.

This model assumes that parts of 
the image close to each other 
likely have similar features.
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https://towardsdatascience.com/a-visualization-of-the-basic-elements-of-a-convolutional-neural-network-75fea30cd78d


Where to go from here: Convolutional Neural Networks

Many modern deep learning methods for computer vision use 
Convolutional Neural Networks (CNNs).

(link) Often use linear layers 
at the end!
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https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html


Further Reading: 

• CS231n on Neural Networks
• https://cs231n.github.io/neural-networks-1/

• Prof. Patrick Winston explains Neural Nets (YouTube)
• PyTorch is a great library (in Python) for implementing neural 

networks
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https://cs231n.github.io/neural-networks-1/
https://youtu.be/uXt8qF2Zzfo
https://pytorch.org/tutorials/
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