Machine Learning:
Neural Networks

ROB 102: Introduction to Al & Programming
Lecture 13
2021/12/01

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier
3. Neural Network

Where we are

v' P4.1: Nearest Neighbors v’ P4.2: Linear Classifier
716]3]/{a[2]3]9]3]9

20 20 NNE 2R 2N 2R BN 2 B

7|6|3]/19[2[3[q[3]4
9l6|3[/{9]2]3]a]3]9)
7|e|5|/19[{2[{3[4[3]4
7lo|3[/{9]2]3]4]3]9
yle]1]/1a[2[3[q[3]¢
7]o|3[/{5]2]3]4]|8]4
el \([1]4]2]3]4]2]9)
Fle|1{/{9]9]3]|3]3]9)

9léle6fi{4]9]13]a]3]q
716011/17(21319(3]9]

distance(2 , 2)

Where we are

v' P4.1: Nearest Neighbors

Straight-forward to implement
No training necessary

- Requires a lot of memory
- Expensive at computation time

— Distance isn’t always a good
indicator of class similarity

v' P4.2: Linear Classifier

Only one matrix to learn
Fast at test time

—Can only represent linearly
separable data

Can we do better than a
linear model?

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier
3. Neural Network (Today!)

We'll use the same algorithm
for training a neural network!

Where we are

Training algorithm:
For linear classifier, this is just the

/ weight matrix and the bias

Initialize the parameters randomly o ,
Mini-batch sampling

For N iterations, do: o / We used the SVM classification
1. Sample a batch of training images & loss with regularization

2. Evaluate the loss and gradients for the batch using current parameters
3. Update the parameters using the gradients

T Parameters to learn: W, b
Gradient Descent! The learning
rate controls how fast we learn Hyperparameters to tune:

learning rate, reg. coefficient

We'll use the same algorithm for
evaluating a neural network!

Where we are

Prediction algorithm (test time):

W,b
&
Given a test image & parameters from the training stage:
1. Calculate class scores < fX)=WxX+b

2. Assign label of class with the highest score.

!

y pred = argmax(scores)

This time...

* The neural network model s
* Training a neural network '
* Briefly:

* Backpropagation

Not ded for P4.3!
e Convolutional Neural Networks } ot heeaeator

This time: Neural Networks

Linear classifier:
fX)=WxX+0b

Q: How can we represent a more complex, non-linear function?

This time: Neural Networks

Linear classifier:
fX)=WxX+0b

Neural network (2-layers):

f(X) =W, xmax(W; x X+ b{,0) + b,

A neural network can approximate any™* function!

(*with some caveats)
A good visual explanation: (link)

10

http://neuralnetworksanddeeplearning.com/chap4.html

This time: Neural Networks

Linear classifier:
fX)=WxX+b

Neural network (2-layers):

f(X) =W, xmax(W; x X+ b{,0) + b,

Neural network (3-layers):
f(X) =W;3; x max(W, x max(W; X X + b;) + b,) + by

How are these equations neural networks??

The perceptron

A perceptron is an algorithm for binary (linear!) classification.

W@ 2@

+b (1 ifwW-X+b=0
Yored TV1_1 if W-X+b <0

12

(5\

The perceptron

A perceptron is an algorithm for binary (linear!) classification.

&

Recall: This is our linear classifier!

Ypred = {

not twos

1
—-1iftW-X+b<0

ifW-X+b=0

_f(x) =0

f(x) <0

/

A
A,

A AAA ,
NRY
A AR

A

f(x) >0

twos

13

Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons

(without the j]:.)
w@D

2
\N&

@
b @ _ Z @D ® 4 p@
N i

bias '\

“two” class
score

weights
Pixels

14

Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons

(without the j]:.)

@ _ Z @@ 4 @
[

“three” class
score

' \ +b® ¢ o
@ :ZW(3»>x(z>+b(3)
[

15

Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons

(without the j]:.)

class scores

4
@ W@ . x4 @
@ W@ . x 4+ b3

16

Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons

(without the j]:.)

Last time, we saw we can
get all the class scores with
a matrix multiplication

S=WXxX+5b
\\

class scores

& ®®®

17

Building a Neural Network

Our perceptron can only represent linearly separable data. But, a
network of perceptrons can represent more complex functions.

263
(7

w (@) x(2) +b _ 1 ifW-X+b=>0
Yored T1_{ if W-X+b <0

One more problem: This function —1— is not differentiable!

18

Building a Neural Network

We’ll replace —t— with a continuous function, which will allow us to
take the derivative of our loss function and apply Gradient Descent.

263
(7

w@ (2 +b ¢ = W-X+bifW-X+b=0
0 ifW-X+b<0

Our new function () is called the activation function.

19

Activation functions

We will be using the RelLU activation function (Rectified Linear Unit).
This is one of the most common choices in modern neural networks.

ReLU(z)

ReLU(z) = {g hz=0

equivalent

ReLU(z) = max(0, z) rg

20

Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and
activation functions.

S
A
S

Wl(l’i)x(i) +p® “hidden” layer value

|Z, h(Y) = max <O,Z w4 b(1)>

l

o
) > @
& ® @
)

®®®

21

Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and

activation functions. o
(1:l)x(l) + b§1)

(1 D) () (1)
h® + b,
@ / Zw<2 D5 ® ¥ p® %@ @

) (3)x<)+b<3) o
20 Seite e

22

Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and
activation functions.

44,

A

)9
&)

7
Q

A2

() & &
N
RN

)
/
t) &) &) &5
D@ G

Building a Neural Network

Our final two-layer neural network looks like this:

We call this a “fully connected”

Fully Connected Neural Network neworkbecasse cach noce i

connected to all nodes in the
previous layer.

H = max(0,W; X X + by)

W, XX+ by

Neural Network Computation

Weights to learn Input image Biases to learn

. v v .
(2) @)
o bl
— max X + , 0

_ J

1 Wi X

Hidden layer
shapes: (],D) (D,1) (J,1)
rows & Y columns 26

Recall: Matrix Multiplication in Julia

A*B
Ax2 Matrix{Inted}:
10 10
28 28
46 46
64 64

A=1[123;456; 7809; 18 11 12]

size(A * B)
(4, 2)

B=1[33; 22;11]

3x2 Matrix{Int64}:
33 Legal!
2 2
1 1
The inner dimensions match:

(4,3)x(3,2) > (4, 2)

Recall: Matrix Multiplication in Julia

- [1 2 3;

x Hatr1m1Inthﬂ"

[
ri
1

=[11 1;
x{Int64}:

6; 7 8 9;

2 2 2]

10 11 12]

A*C
DimensionMismatch("matrix A has dimensior
s (4,3), matrix B has dimensions (2,3)")
Stacktrace:
[1] FP"PriC matmatmull(> :Matrix

har, :Char, :Matrix y ::Hatriﬁ
LlﬂFaIHIUFhIa MulAddMul
}

lllegal ®
The inner dimensions don’t match:

(4, 3) x (2, 3) = Fails!

Neural Network Computation

R

h(2)

h)

t

Hidden layer

— Mmax

shapes:

Weights to learn

- 4
I

(2)
T
X

Ll L
o
W.

1

Inner dim. match!

Input image

v

X

|

Biases to learn

1
, 0

by
(J,1)

29

\

Neural Network Computation

Hidden layer

h(2)

/

max <0, z Wl(l’i) x @D 4 b§1)>
i

max <O, z chz’i) »@ b§2)>
i

max (O, z Wl(]'i)x(i) + b§1)>

[

30

Neural Network Computation

] R
(2)
ol

><.-I-

- EEES
W.

p®

2
2

K = number of 2 H b2

t

classes

shapes: (K,])\](], 1) (K, 1)

Inner dim. match!

Neural Network Computation

Class scores

/l

e

<@

S

> wiOR® 4 b

i

> wiPh® 4 p?

i

> wiOR® +

i

Neural Network Computation

We can write a two-layer neural network as one big matrix
multiplication:

Activation function
scores = W, x max(0,W; XX + b,) + b,

First linear layer

— 7
~

Second linear layer

33

Why do we need an activation function?

Let’s look at our neural network equation:

scores = W, x max(0,W; XX + b,) + b,

What if we removed the activation function?
scores = W, X (W; X X + by) + b,
o (W, x W) X X+ (W, X by + by)

This is still just a , e
- - w b’
linear classifier!

Parameters:

Exercise

Image:

—
Q
S
o
o
(Vp)
(Vp)
(Vp)
O
(@)
c
4 -
> ©
© =
> LL
K3
X
P h
. . -
[I I
=
3 m g
%] 7 &D

Exercise:

<
c
S
(]
>
N 1 N 1\ 1 b
-] &N | o]
= | 2| 2| 2|35
O
o
I

36

X = [56; 231; 24; 2]
-element Vector{Int64d}:

Exercise:

Wl = [8.2 -8.5 8.1 2.8; -8.2 .0 8.4 1.3; 1.1 8.7 -8.9 -8.2; -1.9 1.8 6.9 2.1]
Matrix{Floato4d}:
3.2 -8.5 8.1

0.9

56 |1231 11 07 00

-27; 2.1]

Zf""ﬂ 2 elems ectar--{Flaa;cE:'.-Ll:',-:

R

Wl * X + bl H = max.(8, WL * X + bl)

h(2)

hL(3)

h4)

H = max(0,W; X X + by)

X = [56; 231; 24; 2]
-element Vector{Int64d}:

B

Exercise:

Wl =[08.2 -6.508.12.09; -8.20.00.41.3; 1.1 0.7 -8.9 -80.2; -1.9 1.8 8.9 2.1]

h W “Eltrth].Da‘thﬂ-"
.2 -@. 8.1
b 9.2 @_@ 0.
56 (231 1.1 0.7 -0.9
re @ 1.9 1.0 0.9
. d bl = [9.1; 7.3; -27; 2.1]
wam 2 -element Vector 1_F1L'?Iatt:-ﬂ-}-!
9.1
3
-

W1 * X + bl

H=max.(8, WL * X + bl)
h(z) = 8.3 A-element Vector{Floatod}: —FlePnt Vector{Floatod}:
-88.8

h(=1743

h® = 1525

Parameters:

Exercise

Image:

Pixel values

Scat

=?

Sphird

Exercise:

Scat

Sdog

Sbhird

I

Class scores

40

Exercise:

W2 = [0.8 0.9 0.0 1.4; 0.3 -08.3 2.2 -1.2; 0.6 0.7 -0.1 -0.6]
3x4 Matrix{Float64}:
0.8 f.9 0.0 1.4

. ©.3 -8e.3 2.2 -1.2

B.7y -8.1 -8.6

s scores = W2 * H + b2
cat

W, X H + b,

Sdog

Shird

Exercise:

W2 = [0.8 8.9 0.0 1.4; 9.3 -0.3 2.2 -1.2; 0.6 0.7 -0.1 -0.6]
3x4 Matrix{Float64}:
.8 ©.9 0.0 1.4
0.3

3 -0.3 2.2 -1.2
6.7 -86.1 -06.6

argmax(scores)

Scqr = 188.97 scores = W2 * H + b2
ca 3-element Vector{Float64}:

188.97

Sqog = 211.97

Spirg = —84.12 Predicted class: 2 = dog

Fully Connected Neural Network

This is a two-layer neural network (the input layer isn’t counted).

Parameters to learn:

Fully Connected Neural Network /)%™ *

scores = W, X max(0,W; X X + by) + b,

Fully Connected Neural Network

A three-layer neural network looks like this:

Parameters to learn:

Fully Connected Neural Network)" "

scores = W5 X max(0, W, X max(0,W; X X + b;) + b,) + bs

Deep Neural Networks

The number of hidden layers and the size of each hidden layer are
hyperparameters we need to pick.

M

Back to Project 4...

47

P4.3: Forward Pass

We call the computation of the scores the forward pass because we
are moving forward through the graph.

function nn_forward(params, X)
W1, bl = params["W1"], params["bl"]
W2, b2 params["W2"], params["b2"]

Put scores and H in these
scores, hidden = nothing, nuthingK variables.

TODO: Calculate the scores and values after the first RelLlU Layer.

return scores, hidden \ Your turn!
end A Calculate the scores here.
This is a typo!! Also return H.

hidden layer -> hidden

48

Loss Function

We already have a function to tell us how good we are doing at
classifying our images: the SVM loss!

Incorrect class score ~, ,— Correct class score

L=y {fim +A-£,00 if f,X) < fi(X) + 4
U 0 otherwise

In English: For each incorrect class, add its loss to the total, if it wasn’t
less than the correct class by the margin.

We will reuse the same loss function as for the linear classifier!

49

Regularization

We will apply regularization to the weight matrix just like in the linear
classifier.

But this time, we have two weight matrices!

Dx]J JXK

Lreg(Wl'WZ) =04 z (Wl(l))z + (Wz(l))z
=1 i=1
Regularization/ \ T

coefficient Sum of all the squared weights
(need to tune this) in the weight matrices

X

P4.3: Loss & Regularization

This will look very similar to the loss function in the linear classifier!

function nn_svm_loss(params, X, y, reg=a)
Wi, bl params["W1"], params["bl"]
W2, b2 = params["W2"], params["b2"]

N, D = size(X)

loss -0 € Replace with your computed value.

scores, hidden = nothing, nothing

TODO: Use the nn forward() function to perform the forward pass, then
calculate the svm Loss. Remember the regularization term on both

weight matrices.
\Your turn!

Get the gradients.
grads = nn_svm_grad(params, X, y, scores, hidden, reg)

Calculate the loss here.
return loss, grads \

Provided gradient computation

end

51

Updating the Weights

We know that our fully connected neural network is differentiable, so
we can analytically calculate the gradients for each parameter.

Gradients are provided for you in P4.3.

function nn_svm_grad(params, X, y, scores, hidden, reg=8)
W1, bl = params["W1"], params["bl"]
W2, b2 = params["W2"], params["b2"]

grads = Dict([("w1", dWl), ("b1", dbl), ("W2", dw2), ("b2", db2)])
return grads
end

52

Updating the Weights

We know that our fully connected neural network is differentiable, so
we can analytically calculate the gradients for each parameter.

Gradients are provided for you in P4.3.

We can use Gradient Descent to update W5, b{, W, and b, just like we
did in P4.2 (no bias trick this time!)

Putting it all together

Training algorithm:

Initialize weights to small values
/ drawn from a normal distribution

Wl, W2 < randn(J, D) *eps, randn (K, J) *eps
bl, b2 « zeros(J), zeros (K) < Initialize biases to zero

for i1teration in 1:N do:

loss

SVM loss (W1, W2, bl, b2, X, y)

dwl, dwW2,dbl,db2 = nn grads (Wl,W2,bl,b2,X,vy)

w1l
bl
W2
b2

w1l
bl
W2
b2

step size * dWl
step size * dbl
step size * dWZ2
step size * db2

54

Putting it all together

Traini | ithm: Initialize weights to small values
raining algorithm: / drawn from a normal distribution

Wl, W2 < randn(J, D) *eps, randn (K, J) *eps

bl, b2 « zeros(J), zeros (K) <+ Initialize biases to zero
for i1teration in 1:N do:

loss = SVM loss(Wl, W2, bl, b2z, X, V)

dwl, dwW2,dbl,db2 = nn grads (Wl,W2,bl,b2,X,vy)
Wl = Wl - step size * dWl

bl = bl - step size * dbl

W2 = W2 - step size * dWZ

b2 = b2 - step size * db2

For a fixed number
of iterations...

55

Putting it all together

Traini | ithm: Initialize weights to small values
raining algorithm: / drawn from a normal distribution

Wl, W2 < randn(J, D) *eps, randn (K, J) *eps

bl, b2 <« zeros(J), zeros (K) <+—— |nitialize biases to zero Sample a
for iteration in 1:N do: "MTS T%B‘*’/b“m!
loss = SVM_]_OSS(W]_, W2, bl, b2, X, vy)<— Calculate the loss.
dwl, dwW2,dbl,db2 = nn grads (Wl,W2,bl,b2,X,vy)

Wl = Wl - step size * dWl

bl = bl - step size * dbl

W2 = W2 - step size * dWZ

b2 = b2 - step size * db2

For a fixed number
of iterations...

56

Putting it all together

Traini | ithm: Initialize weights to small values
raining algorithm: / drawn from a normal distribution

Wl, W2 < randn(J, D) *eps, randn (K, J) *eps

bl, b2 <« zeros(J), zeros (K) <+—— |nitialize biases to zero Sample a
for iteration in 1:N do: "MTS T%B‘+’/b“m!
loss = SVM_]_OSS(W]_, W2, bl, b2, X, vy)<— Calculate the loss.
dwl, dwW2,dbl,db2 = nn grads (Wl,W2,bl,b2,X,vy)

Wl = Wl - step size * dWl AN
bl = bl - step size * dbl

W2 = W2 - step size * dWZ

b2 = b2 - step size * db2

For a fixed number
of iterations...

Calculate the gradients.

57

Putting it all together

Traini | ithm: Initialize weights to small values
raining algorithm: / drawn from a normal distribution

Wl, W2 < randn(J, D) *eps, randn (K, J) *eps

bl, b2 < zeros(J), zeros (K) <+—— |nitialize biases to zero Sample a

' N ' H k,
for iteration in 1:N do: ”MTS Tms batch!

loss = SVM_]_OSS(W]_, W2, bl, b2, X, vy)<— Calculate the loss.
dWwl,dw2,dbl,db2 = nn grads (Wl,W2,bl,b2,X,vVy)

For a fixed number
of iterations...

Wl = Wl - step size * dWl AN

bl = bl — Step_size x db1l Calculate the gradients.
W2 = W2 - step size * dWZ2

b2 = b2 - step size * db2 %

Update the parameters
with gradient descent

58

Putting it all together

function train_nn{params, X, y, num_classes, 1r=B8.81, reg=1e-3, batch=28, num iters=188, print freq=188)
M, D = size(X)

losses = zeros(num_iters)

for it in 1:num_iters

TODO: Sample a random batch, calculate the loss agnd gradients, and update
all the weights in params. Place the Loss for this iteration at

Losses[it].
T romeny \Your turn!

if it ¥ print _freq == @

println("Iteration ", it, ": average loss = ", sum(losses) / it) erte the tralnlng IOOp
end
end f]EErEE.

return losses, params
end

59

Tuning hyperparameters

The regularization coefficient 7 pefine constants.

hidden_dims = 36

1 num_iters = 15688
and learning rate need to be ~ nuniters R e

tuned, like in P4.2. reg - le-5

1r = 1e-1

Initialize weights.

Wl = 1e-4 * randn{DIM, hidden dims})
The number of nodes (or o1 - zaros (1, hidden dins)
neurons) in the hidden layer !2- ;j,‘,;Iifa:ﬂr’;j';‘ijiiggg‘l“: num_classes)
Can aISO be tuned. params = Dict([("W1", W1), ("b1", b1}, ("W2", W2), ("b2", b2)])

Train the network.
losses, params = train_nn(params, x_train, y_train, num_classes, 1lr, reg, batch, num_iters)

See last lecture (Lecture 12 on # Plot the Losses. \

. . plot(1l:num_iters, losses) ;
Optimization) for how to tune This line calls your training function.
parameters. params contains the optimized

weights when it’s finished.

60

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

It uses the chain rule (from calculus).

61

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Step 1: Express a function as a graph.

g=x+y
fx,v,z2) =(x+y) -z ; >@

62

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Step 2: Compute gradients. dq
0x
f(x,y,z)=(x+y)°Z >O\+C_I_=x+y
of _0adf _ 4 y <
dx Ox dq -

1‘ Z

The chain rule!

63

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Step 2: Compute gradients.

f(x,y,z)=(x+y)°Z J@CI_ZX'FY
<€
of _9a0f _, ., 2

dy 0y dq al

64

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Step 2: Compute gradients.

f(x,y,z)=(x+y)-z >®q=x+y

6f_
az_q

af
0z

65

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Instead of computing the derivative
of the loss for a huge network,
compute the gradient of each layer
with respect to the input.

Then we can propagate the gradients
backwards through the graph.

Input Layer

Hidden Layer

That’s why it’s called the backward pass!

Where to go from here: Convolutional Neural Networks

Many modern deep learning methods for computer vision use
Convolutional Neural Networks (CNNs).

Type: conv - Stride: 1 Padding: |

Instead of flattening the image into
a vector and having a giant weight
matrix, we slide a kernel across the
image. This is a convolution.

This model assumes that parts of
the image close to each other
likely have similar features.

https://towardsdatascience.com/a-visualization-of-the-basic-elements-of-a-convolutional-neural-network-75fea30cd78d

Where to go from here: Convolutional Neural Networks

Many modern deep learning methods for computer vision use
Convolutional Neural Networks (CNNs).

_ C3: §. maps 16@ 10x10
INPUT C1: feature maps S4:f. maps 16@5x5
I232 6@28:28

FS: layer OUTPUT
120 I;!i layer +:

] Ful cmdecﬁun | Gaussian connections
Convolutions Subsampling Comvolutions Subsampling Full connection
(link) Often use linear layers

at the end!
68

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Further Reading:

e CS231n on Neural Networks
e https://cs231n.github.io/neural-networks-1/

 Prof. Patrick Winston explains Neural Nets (YouTube)

e PyTorch is a great library (in Python) for implementing neural
networks

69

https://cs231n.github.io/neural-networks-1/
https://youtu.be/uXt8qF2Zzfo
https://pytorch.org/tutorials/

	Machine Learning: �Neural Networks
	Project 4: Machine Learning
	Where we are
	Where we are
	Project 4: Machine Learning
	Where we are
	Where we are
	This time…
	This time: Neural Networks
	This time: Neural Networks
	This time: Neural Networks
	The perceptron
	The perceptron
	Recall: Linear Classification
	Recall: Linear Classification
	Recall: Linear Classification
	Recall: Linear Classification
	Building a Neural Network
	Building a Neural Network
	Activation functions
	Building a Neural Network
	Building a Neural Network
	Building a Neural Network
	Building a Neural Network
	Fully Connected Neural Network
	Neural Network Computation
	Recall: Matrix Multiplication in Julia
	Recall: Matrix Multiplication in Julia
	Neural Network Computation
	Neural Network Computation
	Neural Network Computation
	Neural Network Computation
	Neural Network Computation
	Why do we need an activation function?
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Fully Connected Neural Network
	Fully Connected Neural Network
	Fully Connected Neural Network
	Fully Connected Neural Network
	Deep Neural Networks
	P4.3: Forward Pass
	Loss Function
	Regularization
	P4.3: Loss & Regularization
	Updating the Weights
	Updating the Weights
	Putting it all together
	Putting it all together
	Putting it all together
	Putting it all together
	Putting it all together
	Putting it all together
	Tuning hyperparameters
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Where to go from here: Convolutional Neural Networks
	Where to go from here: Convolutional Neural Networks
	Further Reading:

