
Machine Learning:
Neural Networks

ROB 102: Introduction to AI & Programming
Lecture 13

2021/12/01

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier
3. Neural Network

2

Where we are

distance(,) 𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

 P4.1: Nearest Neighbors  P4.2: Linear Classifier

3

Where we are

 P4.1: Nearest Neighbors  P4.2: Linear Classifier

+ Straight-forward to implement
+ No training necessary

− Requires a lot of memory
− Expensive at computation time
− Distance isn’t always a good

indicator of class similarity

+ Only one matrix to learn
+ Fast at test time

− Can only represent linearly
separable data

Can we do better than a
linear model?

4

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier
3. Neural Network (Today!)

5

Where we are

Training algorithm:

Initialize the parameters randomly
For 𝑁𝑁 iterations, do:

1. Sample a batch of training images
2. Evaluate the loss and gradients for the batch using current parameters
3. Update the parameters using the gradients

For linear classifier, this is just the
weight matrix and the bias

Mini-batch sampling

We used the SVM classification
loss with regularization

Gradient Descent! The learning
rate controls how fast we learn

Parameters to learn: 𝑊𝑊, 𝑏𝑏
Hyperparameters to tune:
learning rate, reg. coefficient

We’ll use the same algorithm
for training a neural network!

6

Where we are

Prediction algorithm (test time):

Given a test image & parameters from the training stage:
1. Calculate class scores
2. Assign label of class with the highest score.

𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

𝑊𝑊, 𝑏𝑏

y_pred = argmax(scores)

We’ll use the same algorithm for
evaluating a neural network!

7

This time…

• The neural network model
• Training a neural network
• Briefly:

• Backpropagation
• Convolutional Neural Networks

P4.3

Not needed for P4.3!

8

This time: Neural Networks

Linear classifier:
𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

Q: How can we represent a more complex, non-linear function?

9

This time: Neural Networks

Linear classifier:
𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

Neural network (2-layers):

𝑓𝑓 𝑋𝑋 = 𝑊𝑊2 × max 𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1, 0 + 𝑏𝑏2

A neural network can approximate any* function!
(*with some caveats)

A good visual explanation: (link)
10

http://neuralnetworksanddeeplearning.com/chap4.html

This time: Neural Networks

Linear classifier:
𝑓𝑓 𝑋𝑋 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏

Neural network (2-layers):

𝑓𝑓 𝑋𝑋 = 𝑊𝑊2 × max 𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1, 0 + 𝑏𝑏2

Neural network (3-layers):

𝑓𝑓 𝑋𝑋 = 𝑊𝑊3 × max 𝑊𝑊2 × max 𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏3

How are these equations neural networks??
11

The perceptron

A perceptron is an algorithm for binary (linear!) classification.

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0
−1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0Σ𝑤𝑤(2)𝑥𝑥(2) + 𝑏𝑏

12

The perceptron

A perceptron is an algorithm for binary (linear!) classification.

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0
−1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0

Recall: This is our linear classifier!

Σ𝑤𝑤(2)𝑥𝑥(2) + 𝑏𝑏

13

twos

not twos

Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons
(without the)

Σ
𝑤𝑤(2,1)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

+𝑏𝑏(2)

𝑠𝑠(2) = �
𝑖𝑖

𝑤𝑤(2,𝑖𝑖)𝑥𝑥(𝑖𝑖) + 𝑏𝑏(2)

Pixels
weights

bias
“two” class
score

14

Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons
(without the)

Σ𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

+𝑏𝑏(2)

𝑠𝑠(2)

𝑤𝑤(3,3)

Σ +𝑏𝑏(3)

𝑠𝑠(3) = �
𝑖𝑖

𝑤𝑤(3,𝑖𝑖)𝑥𝑥(𝑖𝑖) + 𝑏𝑏(3)

15

“three” class
score

= �
𝑖𝑖

𝑤𝑤(2,𝑖𝑖)𝑥𝑥(𝑖𝑖) + 𝑏𝑏(2)

Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons
(without the)

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(2)

Σ 𝑠𝑠(3)

Σ
Σ

𝑠𝑠(4)

𝑠𝑠(5)

𝑊𝑊(2) ⋅ 𝑋𝑋 + 𝑏𝑏(2)

𝑊𝑊(3) ⋅ 𝑋𝑋 + 𝑏𝑏(3)

𝑊𝑊(4) ⋅ 𝑋𝑋 + 𝑏𝑏(4)

𝑊𝑊(5) ⋅ 𝑋𝑋 + 𝑏𝑏(5)

class scores

16

Recall: Linear Classification

We can build a multi-class linear classifier as multiple perceptrons
(without the)

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(2)

Σ 𝑠𝑠(3)

Σ
Σ

𝑠𝑠(4)

𝑠𝑠(5)

𝑆𝑆 = 𝑊𝑊 × 𝑋𝑋 + 𝑏𝑏
class scores

Last time, we saw we can
get all the class scores with
a matrix multiplication

17

Building a Neural Network

Our perceptron can only represent linearly separable data. But, a
network of perceptrons can represent more complex functions.

One more problem: This function is not differentiable!

𝑤𝑤(2)𝑥𝑥(2)
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0

−1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0
+𝑏𝑏Σ

18

We’ll replace with a continuous function, which will allow us to
take the derivative of our loss function and apply Gradient Descent.

Our new function 𝜎𝜎(⋅) is called the activation function.

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0
−1 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0

Building a Neural Network

𝑠𝑠 = �𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 ≥ 0
0 if 𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏 < 0

+𝑏𝑏Σ
𝜎𝜎(⋅)

19

𝑤𝑤(2)𝑥𝑥(2)

Activation functions

We will be using the ReLU activation function (Rectified Linear Unit).
This is one of the most common choices in modern neural networks.

𝑧𝑧

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑧𝑧

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑧𝑧 = �𝑧𝑧 if 𝑧𝑧 ≥ 0
0 else

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑧𝑧 = max 0, 𝑧𝑧
equivalent

20

Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and
activation functions.

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(2)

�
𝑖𝑖

𝑤𝑤1
1,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏(1)

Σ
𝑠𝑠(3)

Σ
Σ Σ

Σ
ℎ(1) = max 0,�

𝑖𝑖

𝑤𝑤1
1,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏(1)

“hidden” layer value

21

Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and
activation functions.

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

�
𝑖𝑖

𝑤𝑤1
1,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏1

1

Σ

Σ
Σ Σ

Σ
�
𝑖𝑖

𝑤𝑤1
2,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏1

2

�
𝑖𝑖

𝑤𝑤1
3,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏1

3

�
𝑖𝑖

𝑤𝑤1
4,𝑖𝑖 𝑥𝑥(𝑖𝑖) + 𝑏𝑏1

4

�
𝑖𝑖

𝑤𝑤2
1,𝑖𝑖 ℎ(𝑖𝑖) + 𝑏𝑏2

(1)

22

𝑠𝑠(2)

𝑠𝑠(3)

Building a Neural Network

We can stack up multiple “neurons” made up of linear functions and
activation functions.

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

Σ

Σ
Σ Σ

Σ

23

𝑠𝑠(2)

𝑠𝑠(3)

Building a Neural Network

Our final two-layer neural network looks like this:

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

Σ

Σ
Σ Σ

Σ

Input Layer
Hidden Layer

Output Layer

neuron

24

𝑠𝑠(2)

𝑠𝑠(3)

Fully Connected Neural Network

𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1
𝐻𝐻 = max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1

𝑊𝑊2 × 𝐻𝐻 + 𝑏𝑏2

We call this a “fully connected”
network because each node is
connected to all nodes in the
previous layer.

Σ
𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

Σ

Σ
Σ Σ

Σ

Input Layer
Hidden Layer

Output Layer

25

𝑠𝑠(2)

𝑠𝑠(3)

Neural Network Computation

+

𝑤𝑤1
1,1 𝑤𝑤1

1,2 ��� 𝑤𝑤1
1,𝐷𝐷

𝑋𝑋

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

= ×

𝑏𝑏1
(1)

𝑏𝑏1
(2)

𝑏𝑏1
(𝐽𝐽)

𝑏𝑏1

ℎ(1)

ℎ(2)

ℎ(𝐽𝐽)

𝑊𝑊1

𝑤𝑤1
2,1 𝑤𝑤1

2,2 ��� 𝑤𝑤1
2,𝐷𝐷

𝑤𝑤1
𝐽𝐽,1 𝑤𝑤1

𝐽𝐽,2 ��� 𝑤𝑤1
𝐽𝐽,𝐷𝐷

⋅⋅⋅

max , 0

𝐷𝐷, 1shapes: 𝐽𝐽,𝐷𝐷 𝐽𝐽, 1

Input image

Hidden layer

Biases to learnWeights to learn

rows columns 26

Recall: Matrix Multiplication in Julia

27

Legal!

The inner dimensions match:

(4, 3) x (3, 2) → (4, 2)

Recall: Matrix Multiplication in Julia

28

Illegal 

The inner dimensions don’t match:

(4, 3) x (2, 3) → Fails!

Neural Network Computation

+

𝑋𝑋

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(𝐷𝐷)

= ×

𝑏𝑏1
(1)

𝑏𝑏1
(2)

𝑏𝑏1
(𝐽𝐽)

𝑏𝑏1

ℎ(1)

ℎ(2)

ℎ(𝐽𝐽)

𝑊𝑊1

⋅⋅⋅

max , 0

𝐷𝐷, 1shapes: 𝐽𝐽,𝐷𝐷 𝐽𝐽, 1

Input image

Hidden layer

Biases to learnWeights to learn

Inner dim. match! 29

𝑤𝑤1
1,1 𝑤𝑤1

1,2 ��� 𝑤𝑤1
1,𝐷𝐷

𝑤𝑤1
2,1 𝑤𝑤1

2,2 ��� 𝑤𝑤1
2,𝐷𝐷

𝑤𝑤1
𝐽𝐽,1 𝑤𝑤1

𝐽𝐽,2 ��� 𝑤𝑤1
𝐽𝐽,𝐷𝐷

Neural Network Computation

=

ℎ(1)

ℎ(2)

ℎ(𝐽𝐽)

max 0,�
𝑖𝑖

𝑤𝑤1
1,𝑖𝑖 𝑥𝑥 𝑖𝑖 + 𝑏𝑏1

(1)

max 0,�
𝑖𝑖

𝑤𝑤1
2,𝑖𝑖 𝑥𝑥 𝑖𝑖 + 𝑏𝑏1

(2)

max 0,�
𝑖𝑖

𝑤𝑤1
𝐽𝐽,𝑖𝑖 𝑥𝑥 𝑖𝑖 + 𝑏𝑏1

(𝐽𝐽)

Hidden layer

30

Neural Network Computation

+

𝑤𝑤2
1,1 𝑤𝑤2

1,2 ��� 𝑤𝑤2
1,𝐽𝐽

𝐻𝐻

= ×

𝑏𝑏2
(1)

𝑏𝑏2
(2)

𝑏𝑏2
(𝐾𝐾)

𝑏𝑏2

𝑠𝑠(1)

𝑠𝑠(2)

𝑠𝑠(𝐾𝐾)

𝑊𝑊2

𝑤𝑤2
2,1 𝑤𝑤2

2,2 ��� 𝑤𝑤2
2,𝐽𝐽

𝑤𝑤2
𝐾𝐾,1 𝑤𝑤2

𝐾𝐾,2 ��� 𝑤𝑤2
𝐾𝐾,𝐽𝐽

⋅⋅⋅

𝐽𝐽, 1shapes: 𝐾𝐾, 𝐽𝐽 𝐾𝐾, 1

ℎ(1)

ℎ(2)

ℎ(𝐽𝐽)

Inner dim. match!

K = number of
classes

31

Neural Network Computation

=

𝑠𝑠(1)

𝑠𝑠(2)

𝑠𝑠(𝐾𝐾)

�
𝑖𝑖

𝑤𝑤𝟐𝟐
1,𝑖𝑖 ℎ 𝑖𝑖 + 𝑏𝑏2

(1)

�
𝑖𝑖

𝑤𝑤2
2,𝑖𝑖 ℎ 𝑖𝑖 + 𝑏𝑏2

(2)

�
𝑖𝑖

𝑤𝑤2
𝐾𝐾,𝑖𝑖 ℎ 𝑖𝑖 + 𝑏𝑏2

(𝐾𝐾)

Class scores

32

Neural Network Computation

We can write a two-layer neural network as one big matrix
multiplication:

scores = 𝑊𝑊2 × max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2
First linear layer

Second linear layer

Activation function

33

Why do we need an activation function?

Let’s look at our neural network equation:

scores = 𝑊𝑊2 × max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2

What if we removed the activation function?

scores = 𝑊𝑊2 × 𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2
= 𝑊𝑊2 × 𝑊𝑊1 × 𝑋𝑋 + 𝑊𝑊2 × 𝑏𝑏1 + 𝑏𝑏2

𝑊𝑊𝑊 𝑏𝑏𝑏
This is still just a
linear classifier!

34

Exercise:

56 231

24 2

0.2 -0.5 0.1 2.0 9.1

𝑏𝑏1

Image:

Parameters:

Pixel values

1.1 0.7 -0.9 -0.2
𝑊𝑊1

-0.2 0.0 0.4 1.3

-27

7.3

-1.9 1.0 0.9 2.1 2.1

0.8 0.9 0.0 1.4 -32

𝑏𝑏2
0.6 0.7 -0.1 -0.6

𝑊𝑊2 0.3 -0.3 2.2 -1.2

19

14

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = ?

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = ?

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ?
Find the class scores!

35

Exercise: 56 231

24 2

𝑏𝑏1𝑊𝑊1

ℎ(1)

ℎ(2)

ℎ(3)

ℎ(4)

56

231

24

2

𝑋𝑋

× +max , 0=

9.1

-27

7.3

2.1

0.2 -0.5 0.1 2.0

1.1 0.7 -0.9 -0.2

-0.2 0.0 0.4 1.3

-1.9 1.0 0.9 2.1

Hidden layer
36

Exercise:

56 231

24 2

ℎ(1)

ℎ(2)

ℎ(3)

ℎ(4)

𝐻𝐻 = max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 37

Exercise:

56 231

24 2

ℎ(1) = 0

ℎ(2) = 8.3

ℎ(3) = 174.3

ℎ(4) = 152.5
38

Exercise:

56 231

24 2

0.2 -0.5 0.1 2.0 9.1

𝑏𝑏1

Image:

Parameters:

Pixel values

1.1 0.7 -0.9 -0.2
𝑊𝑊1

-0.2 0.0 0.4 1.3

-27

7.3

-1.9 1.0 0.9 2.1 2.1

0.8 0.9 0.0 1.4 -32

𝑏𝑏2
0.6 0.7 -0.1 -0.6

𝑊𝑊2 0.3 -0.3 2.2 -1.2

19

14

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = ?

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = ?

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ?

39

Exercise: 56 231

24 2

𝑏𝑏2𝑊𝑊2

𝐻𝐻

× +
𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

0

8.3

174.3

152.5

0.8 0.9 0.0 1.4

0.6 0.7 -0.1 -0.6

0.3 -0.3 2.2 -1.2=
-32

19

14

Class scores

40

Exercise:

56 231

24 2

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊2 × 𝐻𝐻 + 𝑏𝑏2

41

Exercise:

56 231

24 2

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = 188.97

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 = 211.97

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = −84.12 Predicted class: 2 = dog

42

This is a two-layer neural network (the input layer isn’t counted).

Fully Connected Neural Network

ℎ(1)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(1)

ℎ(4)

𝑠𝑠(2)

ℎ(2)

ℎ(3)

Input Layer
Hidden Layer

Output Layer

43

Fully Connected Neural Network

ℎ(1)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

ℎ(4)

ℎ(2)

ℎ(3)

Input Layer
Hidden Layer

Output Layer

scores = 𝑊𝑊2 × max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2

Parameters to learn:
𝑊𝑊1,𝑊𝑊2, 𝑏𝑏1, 𝑏𝑏2

44

𝑠𝑠(1)

𝑠𝑠(2)

A three-layer neural network looks like this:

Fully Connected Neural Network

ℎ1
1

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(1)

ℎ1
4

𝑠𝑠(2)

ℎ1
2

ℎ1
3

Input Layer
Hidden Layer 1

Output Layer

ℎ2
1

ℎ2
4

ℎ2
2

ℎ2
3

Hidden Layer 2
45

Fully Connected Neural Network

ℎ1
1

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

ℎ1
4

ℎ1
2

ℎ1
3

Input Layer
Hidden Layer 1

Output Layer

ℎ2
1

ℎ2
4

ℎ2
2

ℎ2
3

Hidden Layer 2

scores = 𝑊𝑊3 × max 0,𝑊𝑊2 × max 0,𝑊𝑊1 × 𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏3

Parameters to learn:
𝑊𝑊1,𝑊𝑊2,𝑊𝑊3, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3

46

𝑠𝑠(1)

𝑠𝑠(2)

Deep Neural Networks

The number of hidden layers and the size of each hidden layer are
hyperparameters we need to pick.

𝑋𝑋 𝑓𝑓 𝑋𝑋ℎ1 𝑊𝑊2 ℎ2 𝑊𝑊3 ℎ3 𝑊𝑊4 ℎ4 𝑊𝑊5 ℎ5

Back to Project 4…
47

P4.3: Forward Pass

We call the computation of the scores the forward pass because we
are moving forward through the graph.

Your turn!
Calculate the scores here.
Also return H.

Put scores and H in these
variables.

This is a typo!!
hidden_layer -> hidden

hidden

48

Loss Function

We already have a function to tell us how good we are doing at
classifying our images: the SVM loss!

𝐿𝐿 = �
∀𝑖𝑖 ∖𝑦𝑦

�𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ − 𝑓𝑓𝑦𝑦 𝑋𝑋 if 𝑓𝑓𝑦𝑦 𝑋𝑋 < 𝑓𝑓𝑖𝑖 𝑋𝑋 + Δ
0 otherwise

In English: For each incorrect class, add its loss to the total, if it wasn’t
less than the correct class by the margin.

We will reuse the same loss function as for the linear classifier!

Correct class scoreIncorrect class score

49

Regularization

We will apply regularization to the weight matrix just like in the linear
classifier.

But this time, we have two weight matrices!

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝑊𝑊1,𝑊𝑊2 = 𝛼𝛼 �
𝑖𝑖=1

𝐷𝐷×𝐽𝐽

𝑤𝑤1
𝑖𝑖 2

+ �
𝑖𝑖=1

𝐽𝐽×𝐾𝐾

𝑤𝑤2
𝑖𝑖 2

Regularization
coefficient

(need to tune this)
Sum of all the squared weights
in the weight matrices

50

P4.3: Loss & Regularization

This will look very similar to the loss function in the linear classifier!

Your turn!
Calculate the loss here.

Provided gradient computation

Replace with your computed value.

svm

51

Updating the Weights

We know that our fully connected neural network is differentiable, so
we can analytically calculate the gradients for each parameter.

Gradients are provided for you in P4.3.

52

Updating the Weights

We know that our fully connected neural network is differentiable, so
we can analytically calculate the gradients for each parameter.

Gradients are provided for you in P4.3.

We can use Gradient Descent to update 𝑊𝑊1, 𝑏𝑏1,𝑊𝑊2 and 𝑏𝑏2 just like we
did in P4.2 (no bias trick this time!)

53

Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values
drawn from a normal distribution

Initialize biases to zero

54

Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values
drawn from a normal distribution

Initialize biases to zero

For a fixed number
of iterations…

55

Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values
drawn from a normal distribution

Initialize biases to zero
images labels

Sample a
batch!

For a fixed number
of iterations…

Calculate the loss.

56

Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values
drawn from a normal distribution

Initialize biases to zero
images labels

Sample a
batch!

For a fixed number
of iterations…

Calculate the gradients.

Calculate the loss.

57

Putting it all together

Training algorithm:

W1, W2 ← randn(J, D)*eps, randn(K, J)*eps
b1, b2 ← zeros(J), zeros(K)
for iteration in 1:N do:

loss = SVM_loss(W1, W2, b1, b2, X, y)
dW1,dW2,db1,db2 = nn_grads(W1,W2,b1,b2,X,y)
W1 = W1 – step_size * dW1
b1 = b1 – step_size * db1
W2 = W2 – step_size * dW2
b2 = b2 – step_size * db2

Initialize weights to small values
drawn from a normal distribution

Initialize biases to zero
images labels

Sample a
batch!

For a fixed number
of iterations…

Calculate the gradients.

Calculate the loss.

Update the parameters
with gradient descent

58

Putting it all together

Your turn!
Write the training loop
here.

59

Tuning hyperparameters

The regularization coefficient
and learning rate need to be
tuned, like in P4.2.

The number of nodes (or
neurons) in the hidden layer
can also be tuned.

This line calls your training function.
params contains the optimized
weights when it’s finished.

hyperparameters

See last lecture (Lecture 12 on
Optimization) for how to tune
parameters.

60

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

It uses the chain rule (from calculus).

61

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Step 1: Express a function as a graph.

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 ⋅ 𝑧𝑧
𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦

𝑓𝑓 = 𝑞𝑞 ⋅ 𝑧𝑧

62

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Step 2: Compute gradients.

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 ⋅ 𝑧𝑧 𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦

𝑓𝑓 = 𝑞𝑞 ⋅ 𝑧𝑧𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

= 1 ⋅ 𝑧𝑧

The chain rule!

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥

63

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Step 2: Compute gradients.

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 ⋅ 𝑧𝑧 𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦

𝑓𝑓 = 𝑞𝑞 ⋅ 𝑧𝑧𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝜕𝜕𝑞𝑞
𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

= 1 ⋅ 𝑧𝑧 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝜕𝜕𝑞𝑞

𝜕𝜕𝑦𝑦

64

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

Step 2: Compute gradients.

𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦

𝑓𝑓 = 𝑞𝑞 ⋅ 𝑧𝑧𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 𝑞𝑞

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 ⋅ 𝑧𝑧

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧 65

Backpropagation

Backpropagation is an algorithm to compute gradients of arbitrarily
large networks.

ℎ(1)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

𝑠𝑠(1)

ℎ(4)

𝑠𝑠(2)

ℎ(2)

ℎ(3)

Input Layer
Hidden Layer

Output Layer

Instead of computing the derivative
of the loss for a huge network,
compute the gradient of each layer
with respect to the input.

That’s why it’s called the backward pass!

Then we can propagate the gradients
backwards through the graph.

66

Where to go from here: Convolutional Neural Networks

Many modern deep learning methods for computer vision use
Convolutional Neural Networks (CNNs).

(link)

Instead of flattening the image into
a vector and having a giant weight
matrix, we slide a kernel across the
image. This is a convolution.

This model assumes that parts of
the image close to each other
likely have similar features.

67

https://towardsdatascience.com/a-visualization-of-the-basic-elements-of-a-convolutional-neural-network-75fea30cd78d

Where to go from here: Convolutional Neural Networks

Many modern deep learning methods for computer vision use
Convolutional Neural Networks (CNNs).

(link) Often use linear layers
at the end!

68

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Further Reading:

• CS231n on Neural Networks
• https://cs231n.github.io/neural-networks-1/

• Prof. Patrick Winston explains Neural Nets (YouTube)
• PyTorch is a great library (in Python) for implementing neural

networks

69

https://cs231n.github.io/neural-networks-1/
https://youtu.be/uXt8qF2Zzfo
https://pytorch.org/tutorials/

	Machine Learning: �Neural Networks
	Project 4: Machine Learning
	Where we are
	Where we are
	Project 4: Machine Learning
	Where we are
	Where we are
	This time…
	This time: Neural Networks
	This time: Neural Networks
	This time: Neural Networks
	The perceptron
	The perceptron
	Recall: Linear Classification
	Recall: Linear Classification
	Recall: Linear Classification
	Recall: Linear Classification
	Building a Neural Network
	Building a Neural Network
	Activation functions
	Building a Neural Network
	Building a Neural Network
	Building a Neural Network
	Building a Neural Network
	Fully Connected Neural Network
	Neural Network Computation
	Recall: Matrix Multiplication in Julia
	Recall: Matrix Multiplication in Julia
	Neural Network Computation
	Neural Network Computation
	Neural Network Computation
	Neural Network Computation
	Neural Network Computation
	Why do we need an activation function?
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Exercise:
	Fully Connected Neural Network
	Fully Connected Neural Network
	Fully Connected Neural Network
	Fully Connected Neural Network
	Deep Neural Networks
	P4.3: Forward Pass
	Loss Function
	Regularization
	P4.3: Loss & Regularization
	Updating the Weights
	Updating the Weights
	Putting it all together
	Putting it all together
	Putting it all together
	Putting it all together
	Putting it all together
	Putting it all together
	Tuning hyperparameters
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Where to go from here: Convolutional Neural Networks
	Where to go from here: Convolutional Neural Networks
	Further Reading:

